

I

I
HALLS

I PROGRAMMER'S

i GUIDE
IR-63- 2

9 April 1974

I

I

I Prepared by :
P.M. Newbold

R.L. Hotz
Typescript:

I V.L. Cripps Approved:

#

HAL Language/Compiler Dept. !_i
Head ,

' Approved: i" |

I Dr. F. H. Martin

• Shuttle Program Manager| INTERMETRICSINCORPORATED.701 CONCORDAVENUE CAMBRIDGE,MASSACHUSETTS02138 • (617) 661-1840

1974017617-002

I

| FOREWORD

I J

"I
This document was prepared for the Johnson Space

Center, Houston, Texas, under contract NAS 9-13864.

I
!
I /

I

I %

t,

,!

I INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02136 • (617) 661-1840 _

1974017617-003

|

I

INTRODUCTION

HAL/S is a programming language developed by Intermetrics, Inc.

| for the flight software of the NASA Space Shuttle program.
I HAL_S is intended to satisfy virtually all of the flight

software requirements of the Space Shuttle. To achieve this,

HAL/S incorporates a wide range of feat_Ires, including appli-cations-oriented data types and organizations, real time

control mechanisms, and constructs for systems programming
tasks.

As the name indicates, HAL/S is a dialect of the original

HAL language previously developed by Intermetrics [i].

Changes have been incorporated to simplify syntax, curbexcessive generality, or facilitate flight code emission.

I

| REVIEWOFTHELANGUAGE
HAL/S is a higher order language designed to allow programmers,

I analysts, and engineers to communicate with the computer in a
form approximating natural mathematical expression. Par.ts of

the English language are combined with standard notation to

I provide a tool that readily encourages programming withoutdemanding computer hardware expertise.

i HAL/S compilers acceFt two formats of the source text, the*usual single line format, and also a multi-line format corres-

ponding to the natural notation of ordinary algebra.

| '.DATA TYPES AND COMPUTATIONS

I HAL/S provides facilities for manipulating a number of different ,data types. Its integer, scalar, vector, and matrix types,

together with the appropriate operators and built-in functions _

• provide an extremely powerful tool for the implementation of "_

| guidance and control algorithms. Bit and character types are
" also incorporated. _

% I HAL/S permits the formation of multi-dimensional arrays of
homogeneous data types, and of tree-like structures which

are organizations of non-homogeneous data types. *i

I INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 %.

1974017617-004

REAL TIME CONTROL

HAL/S is a real time control language. Defined blocks of _%
code called programs and tasks can be scheduled for execu-

tion in a variety of different ways. A wide range of com_,ands

for controlling their execution is also provided including

mechanisms for interfacing with external interrupts and other
environmental conditions.

ERROR RECOVERY

HAL/S contains an elaborate run time error recovery facility

which allows the programmer freedom (within the constraints

of safety) to define his own error processing procedures, or

to leave control with the operating system.

SYSTEM LANGUAGE

HAL/S contains a number of features especially designed to

facilitate its application to systems programming. Thus,

it substantially eliminates the necessity of using an

assembler language.

PROGRAM RELIABILITY

Program reliability is enhanced when software can, by its •

design, create effective isolation between various sections

of code, while maintaining ease of access to commonly used
|

data. HAL/S is a block oriented language in that blocks

of code may be established with locally defined variables that

are not visible from outside the block. Separately compiled |
program blocks can be executed together and communicate through

one or more centrally managed and highly visible data pools. I
In a r_l time environment, HAL/S couples these precautions with |

locking mechanisms preventing the uncontrolled usage of sensiti,_e "
data or areas of code.

Ik

i.
1
!

INTERMETRICS INCORPORATED "701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 " 1617)661-18401

i

1974017617-005

I ABOUTTHEPROGRAM!.]ER'SGUIDE

1
The Programmer's Guide presents an informal description

of the HAL/S Language to the potential HAL/S programmer.

It is in no meant to be an exhaustive catalog of all
way

the various rules of the language. That is the function

of the HAL/S Language Specification Document. However,

after the HAL/S programmer has absorbed the materialpresented heze, he should have been able to gain enough

insight into the workings of the language to enable him

to use the Language Specification to clarify any ambiguities.
In order to execute a HAL/S program on any given machine, the
programmer will need information contained in the HAL/S User's

Manual appropriate for that machine.

The Programmer's Guide is divided into three parts:

• PART I is aimed at the new HAL/S user and contains

enough information on the compiler language constructs

to enable him to begin progra_aing.
• PART II describes other, more, complex, HAL/S constructs

which will be used regularly in applications programming.

!
• PART III presents programming examples designed to

illustrate and clarify important complex HAL/S Language

I constructs. Some of the examples are constructs tooadvanced to be described in PARTS I and If, but which

are formally defined in %he HAL/S Language Specification.

!
!
!
!

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

I

1974017617-006

, t
J

i
J CONTENTSOF PARTI
I

I 1, STRUCTUREOF HAL/S z-z

1,1 STRUCTURING AND HIGHER ORDER LANGUAGES 1-i

I 1,2 THEBLOCKSTRUCTUREOF HAL/S z-2

I 1,3 STATEMENTGROUPII4GINHAL/S z-8
i

1,4 SUMMARY I-IZ

2, HAL/SSYIIBOLOGY 2-z

2.1 THE CHARACTER SET 2-I

2,2 RESERVED WORDS, IDENTIFIERS, AND LITERALS 2-2
i
, 2,3 FORMAT OF SOURCE TEXT 2-e

I 2,4 STATEMENTDELIMITING 2-i0
2.5 COMMENTS IN HAL/S 2-zo

I 2,6 SUMMARY 2-1Z

| 3, A HALLSCOMPILATION- THEPROGRA_BLOCK 3-z
I

:..1 OPENING AND CLOSING THE BLOCK 3-1

I 3,2 POSITION OF DATA DECLARATIONS 3-2

3,3 FLowOF EXECUTION IN THE PROGRAM 3-3

| 3,4 SUMMARY 3-4

I 4, DATADECLARATION 4-z

" I 4,1 HAL/SDATATYPES 4-i
I

4.2 SIMPLE DECLARATION STATEMENTS 4-2

. I 4,3 INITIALIZATION OF DATA 4-10

LI,4 SUMMARY 4-13 '

I
I INTERME'TRICSINCORPORATED.701CONCORDAVENUE• CAMBRIDGE,MASSACHUSETTS02138. (617)661-1840

1974017617-007

5, REPLACESTATEMENTS s-z

5,1 THE REPLACE STATEMENT 5-1

5,2 USING REPLACE STATEMENTS 5-2

5,3 SUMMARY 5-5

6, DATAREFERENCINGANDSUBSCRIPTING 6-1

6,1 SUBSCRIPTSOF UNARRAYEDDATATYPES 6-i

6,2 SUBSCRIPTSOF ARRAYEDDATATYPES 6-8

6,3 SUMMARY 6-12

7, EXPRESSIONS 7-1

7,i ARITHMETIC OPERATIONS 7-1

7,2 CHARACTER OPERATIONS 7-18

7,3 BOOLEAN OPERATIONS 7-20

7,4 COMBINING OPERATIONS & PRECEDENCE 7-23

7,5 SOMEEXPLICIT CONVERSIONS 7-26 ;i

7,6 SUMMARY 7-32

i'
8, ASSIGNMENTS e-z '

8,1 ARITHMETIC ASSIGNMENTS 8-1 !;

8,2 CHARACTERASSIGNMENTS 8-1

0, 8,3 BOOLEANASSIGNMENTS 8-1 :(
t

8./'1 SUMMARY 8-1 'ii :_

,I]

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661.1840 1 ,,_'

1974017617-008

JW_9, CONDITIONALSTATEMENTSANDBRANCHES 9-i

9,1 THE CONDITIONAL STATEMENT 9-1

9,2 RELATIONAL EXPRESS;ONS 9-/

9.3 LABELS AND BRANCHES 9-15

9,4 SUMMARY 9-19

i0, STATEMENTGROUPS zo-,z

i0,i DELIMITING STATEMENT GROUPS 10-i

10,2REPETITIVE EXECUTION OF STATEMENT GRouPs zo-s

10,3 SELECTIVE EXECUTION OF STATEMENT GROUPS 10-13

10,4 BRANCHING IN STATEMENT GROUPS 10-15

10,5 SUMMARY" i0-21

!

11, FUNCTIONSANDPROCEDURES iz-z

! 11,1 BLOCK DEFINITIONS 1_-i

! 11.2 PARAMETER LISTS zz-z
I

11.3 PROCEDURE CALLING 11-I .

| 11,4 FUNCTION INVOCATION 11-i
b

11.5 BUILT-IN FUNCTIONS 11-1 '
II

| 11,6SUMMARY 11-1 ,

| 12, INPUT/OUTPUTSTATEMENTS z2-_ _12,1 THE READSTATEMENT 12-1 -.

I 12,2 THE WRITE STATEMENT 12-1 '_,L

| 12.3 SIMPLE I/O FORMAT CONTROL 12-i _ILp'' "
I

!12,4 SUMMARY 12-1

I INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840 _ '

1974017617-009

13, SUMMARYOF PARTI z3-z _

!

!

I

I

INTERMETRICS iNCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MA,ehSACHUSETT302138 • (617) 661-184 1 _

1974017617-010

PARTI

Part I of the Programmer's Guide is oriented toward new users

of HAL/S. It covers all the simpler constructs of the language

and contains sufficient information for suprisingly complex

programs to be written. Sections of text delimited by hori-

zontal bars are comments referring to the existence of more

complex HAL/S constructs to be explained in Part II.

t

INTF_MFTRfCS INCORPORATFD • /01 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 "_ '

1974017617-011

I 1, STRUCTUREOFHAL/S

I
This section gives an overv, ew on an abstract le%el of the

i overall properties of HAL/S compilations, and tries to relate
these properties to the need for good programming practice.

Later sections of the Guide interpret these properties in terms

of actual HAL/S Language constructs.

- i,I STRUCTURINGANDHIGHERORDERLANGUAGES
I

A common method of problem solving is the so-called "top down"

| approach. The algorithm for solving the problem is first out-
lined broadly, and then, step by step, delineated in successively

deeper levels of greater detail. The success of the algorithm

in arriving at the solution lies as much in its ability to breakdown the problem into its simplest component parts, as in its

ability to resolve the problem as a whole.

' I If a problem is to be solved by programming it in a higher
order

language, then the "top down" approach is of especial interest
because it lends insight into how the program can be or%anized.

I Specifically, the organization takes the form of an outer program
block enclosing numerous nested "subroutines"*. On the outermost

level, the program is only concerned with the broad outlines of

I the solution, and relegates the first level of detail to the outer iset of subroutines. These _n turn relegate the next level of "\
detail to an inner set of subroutines, and so one until each

i level of the problem has been relegated to the appropriate set" of subroutines. [

_J

,|J •

al
i :

' I * Here the term "subroutine" is loosely used in its gener'.!y
recognized _ense, conveying the idea of a subordinate block ,, ,
of code o .ecutable as a unit on demand. HAL/S use_ different

I termin_.ogy, to be introduced later.

I-i

I INIERMETRICS INCORPORa.I'ED •701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 " (617) (;61-1840

1974017617-012

This particular programminu technique is partly what is meant b_

by "structured programming". This term also implies an ability to

form nested group_; of executable statements inside a program

or subroutine. On each level of nesting, a statement group

has the ability to behave as if it were a single executable
statement.

The overall effect of structured progz_._ming techniques is to
introduce an orderliness into the writing of programs that

not only makes them easier to read but also far less prone uo
error. Most modern higher order languages possess constructs

out of which structured programs can be created: the constructs

of the HAL/S language have been defined deliberately with

structured programming in mind.

1,2 THEBLOCKSTRUCTUREOF HALLS

The structure of a HAL/S compilation, as indicated below,

gene_ally consists of a program block with procedure and
function blocks ne_,t__d within it.

program

- _

D _
b) J:)cka at
level] _

blockm at level I j

j/ ,
bl_ke at
,level 2

I

' ' "'
INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MAS&,_CHUSETrS 02138. {6t7) 661-184CTI I

,q

1974017617-013

I Function and procedure blocks comprise the "subroutines" of

Section i.i. The more deeply nested a block, the deeper the

I level of detail of the problem solution it is supposed tohandle. The differep_e between function and procedure blocks

lies in the manner in which they are invoked, and is clarified

i later in the Guide.
The HAL/S compilation, then, consists of blocks containing

executable statements, some of which perform operations

I on defined data.

| SCOPINGOFDATA ""

In HAL/S, all data must be defined in so-called "data declara-tions". An important consequence of the structural properties

of HA_/S is its ability to place data declarations so as to bound

the regions in a program which may reference the declared data.

This feature is called "scoping".

Data declared at the program level may generally be used through-

I out the entire compilation:

I

region where program

i data declarations areknown; i.e. the "scope"

of program data

I declarations.

|

I program i
i

" I .inner blocks I
I

T

| "
1-3 "

INTERMETRICS INCORPORATED .701 CONCORD AVENUE "CAMBRIDGE. MASSACHUSETTS 02138 . (617) 661-1 _'_0

I

1974017617-014

In addition, any procedure or function block nested within a

progr_n block may declare local data - data known only in that

particular block and in blocks nested within it - as indicated
below:

region where

__'":'_'':"_'_f_2'/"'_;/"_)';_i_!kl"'_'_''.'_'.,,..,,..',-, ,;-z,e,,. _data declared[,:, .._.._.._......,,,,.,,,...:_.:,,:...,...,,._:_,','_,<:.,<'">" :'";;",:';_,_f:,..z,,? local to X are

|" _/],//2;. _'./,'",.""',:"_'_/'Z_'_,:; f" _/,5;,.:_ knownX --,.._,'_.'.'[,}_'_'._".,.' E']. '."; _. _"/./, "
• ,.,f;.._,. ' .._._ . , ...!.<_.;_ _,,'_/_.....,"..,_,,,,;_,.i _,,..,,. ..,,,,i

_ ,,.:.._, _v.,._.,_,.'._ ',,',,,.,,,,,..,.,. ''._j.__,__/_

__ _//_region where

/
Y _ _data declared

_local to Y are

known

l

SCOPINGOFBLOCKNAMES ° '

The program block, and every procedure or function within it _ , '

are named: block names have scoping rules identical with the

scoping rules for data already described. The name of any

procedure or function block is deemed to have been "declared" "_ i_
in the outer block in which that procedure or function is nested. |
This bounds the region where the name is known, and therefore -

from where the procedure or function may be invoked. Thus, the "

name of any procedure or function nested at the program level]

is known anywhere.in the program. However, since in HAL/S _ _,,< _.

i-_ recursion is not allowed, such a procedure or function may be

, iL_vok_._ddfrom anywhere except from inside itself, as indicated: i'I

:_! 1-4
; ,NTERMETRICS INCORPORATEO • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-184u

_t

1974017617-015

%

-. !_

• 1-5 _:

I
tr"r_'_TRIC'£ INCQRPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840 _.

I

1974017617-016

Similarly, inner procedures and functions may be invoked from

anywhere in the block enclosing them except within themselves.

In the following example, inner block B and C can only be

invoked from inside regions X and Y respectively:

X _. region where

block B may be

[[3 ___ invoked

B

regionwher°
• block C may be

C _ invoked

1 'I
_ i i i _

-!

- !

1-6 _

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • !617) 661-1840 1
I

1974017617-017

i b_
I It should be'noted that all forms of recursion in HAL/S

are illegal. The form of recursion not prevented by

j the rules given above is that in which procedures P andQ are not contained in each other, but P calls Q and Q
calls P.

!
It is also possible for a program

i (or any block within it) to in-voke entities outside the compila-

_cion unit; i,e. other compilation

i units. Procedures and functions• may be compiled independently for

this purpose.
See : (tbd)

! ,
;

!
I 7 °k

? ,

l

t

1

*1
1"-7

I t_'T=F_'r-TRIC£ INCORPORATED • 701 CONCORD AVENUE • CAMBRI,,gGE, MASSACHUSETTS 02138 • (617) 661-1840

1974017617-018

1,3 STATEMENTGROUPINGINHAL/S ,_

In HAL/S, the actual step by step solution of a problem is
performed by executable statements contained in the blocks

comprising the program. Sequences of executable statements

may be grouFed together and treated as a single compound

statement. Such statement groups are said to be "well-

bracketed" - they begin with a special statement (a "DO"

statement), and end with another special statement (an "END"

statement). Execution of the sequence of statements in the

group can be controlled in various ways depending on the form

of the opening "DO" statement:

• the sequence may be executed once only;

• the sequence may be executed repetitively until specified
conditions are met;

• one Statement in the sequence may be selected as the
only one to be executed.

Sequences of compound statements may also be grouped together

in the same way and, in turn, be treated as a more complex com-

pound statement, an_ so on to an arbitrary degree of nesting.

Use of this grouping property in conjunction with other HAL/S
constructs can _ubstantially eliminate the need for a "GO TO"

statement (in the Fortran sense, for example), which from the 1
structured programming viewpoint is recognized to be "dangerous"

because it destroys the readability of a program, and makes it

more error-prone. (

STATEMENTGROUPSANDGOTOSTATEMENTS i_'_' "
The design cf HAL/S minimizes the dangers of "GO TO _ statements

! ,by limiting the regions which can be branched to by them, in a way

analogous to the limits imposed on data by the scoping rules
described in Section 1.2.

I
t

I
Y

1-8

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTg 02138 • 1617) 661-1840 _t

1974017617-019

!

I
Consider a program containing nested groups of executable

i statements as sho_ below:

I program

_ ' (0' O) ouuermOStgroupX

I innermost

group Y

_l ©
!
!

i I

I The region of legal destinations of "GO TO" statements containedin group X are as indicated below:

I
program

.'

I outermost '
group X

I O0 .
_,_Iregion of
_legal des- ; i

I _tinations : '_,of GO TO' s
in X

I

. 1
I .,..

1-9

| "INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS C2138 • 16171661-1840

I

1974017617-020

The region of legal destinations of "GO TO" statements contained

in group Y are as indicated below:

I program _&

_ !iregion of
_legal des-

"'_ ' _ _tinations
of GO TO's

_" in Y

Oj
innermost

group y

It is evident from the examples that while groups can be branched

out of, or branched within, they may not be branched into.

INTERACTIONWITHBLOCKSTRUCTURE

Since procedure and function blocks may appear anywhere in a program,

including inside statement groups, the problem arises of branches •

• by means of "GO TO" statements in and out of such blocks.

l
In HAL/S, the destinations of "GO TO" statements are labels attached

to executable statements. Because the scope rules for statement

t labels are the same as for decared data, it follows that it is "_
impossible to branch into a procedure or function block. Additionalll _

a rule is made that br-_hes may not be made out of a block (even

though by scope rules the label of the destination is visible). "I '

I
This leaves the reciprocal processes of call and return-to-caller _ c
the only ways of entering and leaving procedures and functions,

which is in accordance with structured programming principles.

]
1-10

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (6171 661-1846_
i

1974017617-021

L

I
l 1,4 SUMMARY
I

This section has been concerned with the structural properties

I of HAL/S compilations on an abstract level. It remains to bedemonstrated in the ensuing sections of PART I how the properties

are translated into sequences of actual HAL/S constructs. Section

I 2 begins this on the most basic level by describing thecharacteristics of HAL/S source text.

I

I

I
I
'I

!'
' 1-11

I INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974017617-022

i

I

2, HAL/SSYMBOLOGY

HAL/S source text has its own particular characteristics;
a specifzc character set, special combinations of characters
set aside as reserved words, and certain rules dictating
the fo_ of statements. This section is an introduction

to these characteristics of the HAL/S Language.

2,1 THECHARACTERSET

< The HAL/S language uses the following character set:

ABCDEFGHIJKLMNOPQRSTUVWXY Z

abcdefgh_ jklmnopqr stuvwxyz

0123456789
9

+-,.ll_&=<>#@$,;:''')(_%¢

i .(blank)
This character set is a subset of the standard character sets
ASCII and EBCDIC.

I Although the user really needs only the above character set
when writing a HAL/S program, there are additional special

I. characters which can be used in comments and in character
string literals (described later in thxs- section).

" [..... i"
The output listings produced by a HAL/S compiler may use these

I extra special characters for annotation.

I :
.l

I 2-1 ,
,_,,r_,,_TFIPq15'OnRPNRATFD•701CONCOL,J AVENUE •C_ABRIDC£. MASSACIIUSETT$ 02138• (617)66i-1840

1974017617-023

2,2 RESERVEDWORDS,IDENTIFIERS,A;_DLITERALS p

The HAL/S language uses four kinds of primitive elements as

basic constructs:

• RESERVED WORDS are a fixed part of the language and consist

of combinations of upper case alphabetic characters;

• IDENTIFIERS are user-defined names used for data or labels,

and consist of combinations of the alphanumeric characters;

• LITERALS express actual values, and can consist of any of the

symbols in the character set;

• SPECIAL CK_RACTERS serve as delimiters, separators or

operators, and consist of the non-alphanumeric

characters of the HAL/S set.

RESERVEDWORDS

Reserved words are words having a standard meaning in the HAL/S

language. As their name suggests, the user cannot use reserved
words as identifier names. There are two major categories of
reserved words:

t

0 KEYWORDS are used to express parts of HAL/S statements, for I
example:GO TO, DECLARE, CALL, and so on. A complete

list can be found in Appendix . I
l

• BUILT-IN FUNCTION NAMES are used to identify a library of
common mathematical and other routines, for example : i

SINE, SQRT, TRANSPOSE, and so on. A aomplete list can i
be found in Appendix . m

i 2'*

I
I

2-2

I 'INTERMETRICS INCORPORATED" 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETrS 02138 . (6171 661-1840

1974017617-024

!

| IDENTIFIERS

, An identifier name is a user-assigned ha'he identifying an

i item of data, statement block label, or other entity.
a or

The'fcllowing rules must be observed in the creation of

any identifier name*.i
8

l i .,

I i. The total number of characters in the namemust not exceed 32;

i 2. The first character must be alphabetic;
3. The remaining characters may be either

alphabetic or numeric;

4. Any character except the first or last

may be an underscore ().

1 i i i , |

Examp le s:
ELEPHANT AND CASTLE i

A1 -- -- _ legal

I "

!

* Some implementationsof HAL/S may place extra restrictions

- I upon the names of identifiers.

!
L

2-3

INTERMETRtCS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 "

1974017617-025

LITERALS

The three bas "__,. kinds of literals described here are arithmetic,

character string, and Boolean. The utility of arithmetic

' literals is obvious. In simple programming problems, character
string literals find most use in the generation of output.

Boolean literals are used to state logical truth or falsehood.

• ARITHMETIC LITERALS express numerical values in decimal

notation. The generic form of an arithmetic literal
is:

!

,i i,

• %

mantissa _ _-exponent |
±ddd. dddE±ddd

i. ddd represents an arbitrary

number of decimal digits.

2. The exponent is optional.

3. The + signs are optional, i

4. The decimal point is optional.

_E absent, it is considered to be _ ,

to the right of the least signi- !

ficant digit of the mantissa.
If the decimal point is present, I

it may appear anywhere in the mantissa. }
_ l

, 5. The minimum number of digits in the "

and in the _xponent, ifmantissa,

' present, is one. The maximum
I

% number is implementation dependent. .

(See Appendix). I

• It I I ._

.1
I

...... ,"'-n Jr:. ,. r,A,,;?p'_r',;: _JtA_A,"HIJGIt:TT_.. . 02138 • (617) 661-1840

1974017617-026

I

Example_:

0.123E16

i 45.9-4

It is important to note that HAL/S makes no distinction

" I of type between a integral-valued literal and a fractional-
valued literal. Either integer (,,_th possible rounding of

value) or scalar (i.e. floating-point) type is assumed

: according to the context in which the literal is used.

The use of multiple exponents,

and of hexadecimal
binary, OI

octal exponents, in also allowed.
See- (tbd).

! .

.!
!

2-5

I INTERMETPICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETt'$ 02138 • (617) 661-1840

I I ! I I IB/BT

1974017617-027

• CHARACTER STRING LITERALS consist of strings of characters
chosen from the entire HAL/S character set. The _

generic form is:

ICCCCCCCI

i. The quote marks delimit the
beginning and end of the
literal.

2. cccc represerts an arbitrary

number of characters in any
combination.

3. Quote marks within the literal

must be represented by a pair

of quote marks to avoid con-

fusion with the delimiting

quot_s.

4. The minimum number of characters

is zero (a 'null' string), the
m&ximum is 255*.

* This value is implementation dependent. See Appendix _ ,,

for exceptions.

2-6] _,INTFI_,_I::TRICSINCORPORATED. 701 CONCORD AVENUE •CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I

1974017617-028

I

I
Examples:

! ,,
'ONE two THREE'

"_ 'DOG''S'

I

t
.-

If a literal consists of a single

character, or character sequence

repeated may times, a condensed

form of literal using a repeti-

tion factor may be used.
' See: (tbd).

T • BOOLEAN LITERALS express logical truth or falsehood,

and are generally used to set up the values of

Boolean data items (see later). Their forms are:

i
• a |

1 TRUE I expressing truth, or
ON binary "i"

I FALSE } expressing falsehoodOFF or binary "0"

t m • |

f , , Im

Literal strings of binary values

r also exist.
l See (ti:xt).

i in _ , ii i man

• !

[
2-7

I INTE:RMETRtCS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974017617-029

2,3 FORMATOFSOURCETEXT

HAL/S is a "stream-oriented"language, that is, statements

may begin anywhere on a line (or card), and may overflow

" without special indication onto succeeding lines or cards.

Several statements may be written on one line (or card) as

required.

HAL/S is among the very few languages which permits subscripts

and exponents to be represented as they are mathematically,
using lines below and above the main line respectively as needed.

This multi-line format is an optional alternative to the HAL/S

single-line format.

Even when multi-line format is not used, the first character

position of each lin, (or card) is reserved for a symbol

denoting the kind of line format, subscript, main, or i

exponent.

SINGLE-LINEFORMAT-

In single-line format, the first character position of each line

is left blank, _enoting a main line. (An M can alternatively I

be used but is generally not preferred by users.

• EXPONENTS are denoted by the operator **

t°_ Example: w

xt+2 is coded as: -I

:M X**(T+2)

1• SUBSCRIPTS are denoted by parenthesizing the subscript and

preceding it with the symbol $.

Example: |

ai+ 1 is coded as: I

IM AS 1141)
I

2-8 ,I
INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138.(6171661-18401

I

1974017617-030

I

" |

I

| MLII_TI-LINEFORMAT
In multi-line format, the first character of a main line

I is either left blank or M is inserted as before. The firstcharacter of an exponent line is E, and that of a subscript

line is S.

I • EXPONENTS are written on an exponent line (E-line) immediately
above the main line.

I Example :

i x t+2 is coded as:

I i.!
• SUBSCRIPTS are written on a subscript line (S-line) immediately

i below the main line.Example :

I ai+ 1 is coded as:

'.M A

| is I+l
When uszng' multi-line format, care must be taken to ensure that

I nothing on the E- and S-lines overlaps anything" on the M-line.

scripts of subscripts use extra

subscript and exponent lines.

Special rules apply if exponentse

I are subscripted, or if subscripts
T

possess exponents. _ _-

" See: (_d). Ii'
I roll I ml m Ill i i ml n

)

2-9 I'I INTERMETRICS :NCORPORATED • 701 CONCORD AVENUE • CAMSR![JGE, MASSACHUSETTS 0213_) • (817) 661-1840

1974017617-031

- I I

2,4 STATEMENTDELIMITING
m

As Section 2.3 indicated, HAL/S statements may be written in I

free form without regard for line (cr card) boundaries. Be-

cause of this there is the need to explicitly indicate the |
end of each statement with a special symbol. HAL/S uses a !
semicolon for this purpose. The following statements arbitrarily

selected from the language show the placement of the semicolon. I

Examples :

DECLARE I INTEGER; I
I = I + i; m

CALL P(I,J);

!
2.5 COMMENTSINHAL/S |

P

The use of comments is a sine Qua non of good programming practice.
HAL/S possesses two mechanisms for the inclusion of comments in a

compilation.
m

• IMBEDDED COMMENTS may be placed anywhere on main, exponent

or subscript lines of HAL/S text.

• COMMENT LINES may appear between main, exponent and subscript i
lines of HAL/S text. |

IMBEDDEDCOMMENTS |

_ An imbedded comment takes the form: i _ .,- tl !

i i/* ... any text (except */) ... */

tl l ta ! m t J

!
2-10 I _f

,_m_^T_n. 7nl o_CnRD AVFNIIF •CAMBRIDGE, MASSACHUSE_S 021_. (6171 661-1840 I
(

1974017617-032

Such comments may appear between HAL/S statements or imbedded

in a statement, They may not appear in the middle of a literal,

reserved word, or identifie--_. As far as the sense of the source
text is concerned, an imbedded comment is treated as if it were
a string of blank characters.

Example :
!

'M X = X + i; /, ADD ONE TO X */
!
!

COMMENTLINES

Comment lines are input lines specially reserved solely for comments

by placing the character C in the first character position of the

line. The rest of the line may contain any desired text.

Examples:

!M X = X + i;
:C ADD ONE TO X

'C THEN CARRY ON
|

2,6 SUMMARY

In Section 2, the most basic elements of the H_L/S Language have
been outlined: reserved words, identifiers, literals, the

formatting of the source text, and alternate forms of comment "

insertion. ,

In Section 3, the overall form of a HAL/S program will be explained, 1
with special references to how declarations of data and executable

statements may be arranged within it. •

I

I
2-11 l _

' '_'_.,_,"'- _.^.'_'" r-u11_=T7_ n')1_8 • 1_17) 661.1840

1974017617-033

I

I 3. A HAL/SCOMPILATION- THEPROGRAMBLOCK

I

• The structuring of HAL/S programs was dealt with on the conceptual

level in Section i. Section 3 begins to interpret this infor-

i mation in terms of actual HAL/S language constructs.
For the purposes of Part I, an _ntire HAL/S unit of compilation

is known as the "program block". The term "block" has a special

I connotation in this Guide. It is taken to mean a coherentbody of data declarations and executable statements enclosed in

statements delimiting its openin@ and c losin@, and identified

I withoa name.

b

I 3,1 OPENINGANDCLOSINGTHEPROGRAMBLOCK
J

The first statement of a HAL/S program is that statement definingthe name of the program and opening the program block. The last

statement of a HAL/S _rogram is that statement closing the program

I block. Between the two are all the statements comprising the bodyof the program.;

I PROGRAMOPENING,
' The statement that opens the program block takes the form:

!
I . • I I I II I _ IIII I

i <label>: PROGRAM;

I. <label> is any legal identifier
name, and constitutes the name

" I of the program.

I I ,| i | I

. I
I
I 3-1

• Tr'r_ "tn.I PPl'"r''_i_ ^l,P_litl::: , P'"RFII_P_F: |AeC:AP.HIIRFTT_ N_I_8 • (617) 661-1840

1974017617-034

J

i

PROGRAMCLOSING _' _

The program block is closed with the statement:

CLOSE <label>; i

i. The identifier <label> is J
optional.

2. If <label> is supplied, it I
must be the program name,
i.e. the <label> on the

opening statement of the |
program block. I

I
Example:

m

' TEST" PROGRAM; II "

I
, body of program _oes in here
I
i
I

, CLOSE TEST; •
% I

I

3,2 POSITIONOFDATADECLARATIONS I

Normal HAL/S programs require the use of data. The names used I 2
to identify this data must be declared before use by the means

of data declaration statements. Data declarations (and,
additionally, certain other kinds of statements) must be I !placed after the program opening statement and before the •
first executable statement. _

I
I

3-2 IINTERMETRICSINCORPORATED.?01CONCORDAVENUE.CAMBRIDGE, MASSACHUSETTS021_ .(617) _1-1_0

1974017617-035

|

I

I Example:

I
' TEST: PROGRAM;
I

' A data declaration statements

.I 1: __a,_ ,. :_ __C executable statements

i CLOSE TEST;

t '
I

I 3,3 FLOWOF EXECUTIONINTHEPROGRAM

The program begins to execute wi£h the first executable 3tate-

I ment after the data declarations, and thereafter follows a
path determined by the kinds of executable statements encountered.
Unless statement groups, or branching or conditional statements

I intervene, execution is sequential _. Finally, the path eitherreaches a statement terminating execution of the program, or
reaches the closing statement of the program block, which has

I the same effect.
As described in Section 1, procedure and function definition
blocks may be interspersed between the statements in a program

block. The of executing such blocks is by explicit
only way

invocation: if they are encountered in the path of execution

they are passed over as if non-existent.

[--

I

. !
'This order is called the "natural order" of execution.

[
_- 3-3

INTERMETRICSiNCORPORATED. 701CONCORD AVENUE •CAMBRIDGE, MASSACHUSETTS 02138. (617)661-1840

1974017617-036

I

Example : I

TEST : PROGRAM;

declaration

iil}iiii::ii:i i:i!:_ii -- statements

. I_'/,._'%,_ _"_,"%"_'_-.-,_._1

| ,, • .,.< ,,,-_,_\->.,._

i OOee •

I • "

' "f 1 X11 e
, • _ procedure

/ |, • _"---_ _ definition

/ : """ \I I bloc_ :
execution -T

_ ! LOSE; block invoked
i , _and returned

from

_. 3.q SUMMARY]

k Section 3 has described the opening and closing of a program T!
block, has shown where data declarations are placed in it, and !
has explained the path of execution followed through a program
block_ The following chapters of Part X will begin to fill 71

.| in the details of the possible contents of the block. Section 4 i|
I describes hcw data is declared and zeferenaed. It begins to

build on the fundamental information given in Seation 2.

3-4

.... -'_" _t_ ' . f '17_ , '1-1_4n 1

1974017617-037

4, DATADECLARATION

Programming largely consists of the manipulation of numerical
data. The diversity of the data types in a language determines
its utility for any required task. HAL/S contains an except%onally
diverse set of data types.

Identifiers of the kind described in Section 2 are used to name

J items of data. Identifier names used to represent data items
must* be defined in data declarations appearing in the appropriate
program, prodcedure or function block. The effect of placing
data in different blocks is described in Section i. The position
of data declarations within a program block is described in
Section 3.

This Section now proceeds to describe the detailed construction
of data declarations.

4,1 HAL/SDATATYPES
B

In the HAL/S language, arithmetic data of the following types
can be declared}

• INTEGER for the representation of integer-valued quantities;

• SCALAR for the representation of "floating-point" quantities;

• VECTOR for the representatlon of algebraic row or column
vectors (without distinction), and each element of which is o
a SCALAR quantity;

&

•• MATRIX for the representation of algebraic matrices, and each 1
element of which is a SCALAR quantity.

!
|

* The HAL/S language prohibits the use of implicitly declared "."
data items considering it to be an undeslrable programming
practice.

4-1] _,........ "','.",", ",_, t'._- ,"_nn "_,r:_,.mr=. r'AMDRIIhGF PAASSACHLISETTS02138 • (617) 661-184t}

1974017617-038

These arithmetic data types may be specified in either single

or double precision. In the case of INTEGER, the precision &_
determines the maxim,'m absolute value the identifier may take

on. In all other cases, it determines the number of signifi-
° cant digits in the mantissa of the value.

In addition, HAL/S also possesses the fcllowing data _ypes:

• CHARACTER for the representation of strings of text; i

• BOOLEAN for the representation of binary-valued (logical)

quantities.

It is possible to declare arrays (or tables) of any of the six

above types.

!
HAL/S in fact allows more |

data types than just those
I

described here. It also

allows hierarchical organ-

Izatlons of data-types
|

called "structures".

Sees (tbd) i

4,2 SIMPLEDECLARATIONSTATEMENTS |

Data dec.aration statements define identifiers used to name data. I
The simplest forms of declaration statement for each data type

llsted above are examined on the following pages.

t

4-2

INTERMETRICS INCORPORATED •701 CONCORD AVENUE •CAMBRICGE. UA_SACHUSETT8 02138 •(617)661-1840 1

1974017617-039

| INTEGER

t DECLARE <name> INTEGER;
i DECLARE <name> LNTEGER SINGLE;

I I DECLARE <name> INTEGER DOUBLE;
i

i. In each of the form_ <name> is any legal

i HAL/S identifier.
2. Presence of the keyword SINGLE specifies

single precision.

;! 3. Presence of the keyword DOUELE specifies
double precision.

I 4. Absence of either keyword implies default
of single precision.

I
I For the integer data type, single precision usually implieshalfword and double precision fullword, dupending on the

implementation*.

I
Examples:

I

I I DECLARE II INTEGER;I DECLARE BIG_I INTEGER DOUBLE_
I

I
?

I

_' m lira • |1

* See Appendix .

4-3

I tNTERMETRICStNCORPOF_TED • 701 CONCORD AVENUE • CAMBRIDGE.MASSACHUSETTS02138 • (617) 661-1840

1974017617-040

SCALAR

!

, DECLARE <name> SCAIAR;
DECLARE <name> SCALAR SINGLE;

J

; DECLARE <name> SCALAR DOUBIE;
!

i. In each of the forms, <name> is any
legal identifier.

2. Presence of the keyword SINGLE specifies

single precision.

3. Presence of the keyword DOUBLE specifies

double precision.

4. AbsEnce of either keyword ira@lies a de-

fault of single precision.

5. The keyword SCALAR may be omitted.

I

Double precision usually implies increased range of exponent

and increased number of digits in the mantissa, but it is

implementation dependent*.

Examples: |
| "

' DECLARE SI; ' ,

-!: D_D_T.,A_ $2 SCALAR;
' DECLARE 53 SCALAR DOUBLE;
|

6 _

- 1
* See Appendix .

g

4-4
It

......... T_,po t ,_c_- Dc,q • T_n • 7nl CnNC.C_RV)AVEI_IJF • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 66 ! -, 8401

1974017617-041

!

i

I

| MATRIX _
J

I :DECLARE <name> MATRIX (m,n) ;i DECLARE <name> MATRIX (m,n) SINGLE;

; DECLARE <name> MATRIX(m,n) DOUBLE;

I i. In each form <name> is any legal ident_fiez'.

i 2. Keywords SINGLE and DOUBLE have the samesignificance as for SCALAR and VECTOR types.

3. m and n denote respectively the number of

I r_ws and columns in the matrix. They must
lie in the range 1 < m, n _< 16".

I 4. If the size specification (m,n) is absent,a 3x3 matrix is assumed.

!
Examples :

I °0, DECLARE M1 MATRIX (2,4) ;
I

,DECLARE M2 MATRIX (4,5) DOUBLE;

i ' DECLARE M3 MATRIX;
i

' _a 3x3 matrix

I
I

" * This value may be implementation dependent. See Appendix i,

% for exceptions.

i

! !

4-5

I '_NTFr_I_EFF,ICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • 1617) 661-1840
ii

..... v - . .

1974017617-042

VECTOR #"

: DECLARE <name> VECTOR (n) ;

DECLARE <name> VECTOR(n) SINGLE;I

,DECLARE <name> VECTOR(n) DOUBLE;
|

I. In each form <name> is any legal
identifier.

2. Keywords SINGLE and DOUBLE have the ?

same significance as for SCALAR type. i

3. n specifies the length of the vector

and must lie in the range 1 < n Z 16".

4. If the length specification (n) is

omitted a length of 3 is assumed.

Examples : !
I

t

'DECLARE Vl VECTOR(10) ; 7!

,DECLARE V2 VECTOR (3) DOUBLE; t
'DECLARE V3 VECTOR;

I \
a 3-vector ._ _

] ! •

i _ i lllll L i i

• This value may be implementation dependent. See Appendix

for exceptions. I

I
4-6 i _'•-, T-_ ",n4 ,",'_'"_r_ ._1:_,jj_.r_A_R_nC_ MASS,,-%CHI,'SETTS02138 • (617) 661-1840

I

1974017617-043

I

| CHARACTER
L

,DECLARE <name> CHARACTER(n);| .!|
i. <name> is any legal identifier.

i 2. n specifies the maximum length of the text

string that the data type may carry. (i.e.

I the maximum number of characters). It mustlie in the range of 1 { n _ 255*.

i 3. The actual length of the string of textcarried may vary during execution between

zero (a "null" string) and the maximum n.

I
I Example :|

J

,DECLARE C1 CHARACTER(80) ;

! ,I| •

| BOOLEAN

IDECLARE _name> BOOLEAN;I ,
1. <name> is any legal identifier.

I ,
., Example :
•* ¢

:DECLARE. B1 BOOLEAN; _ '

"_" I * This value may be implementation dependent. See Appendix

!

I 4-7

I INTERMETRICS I_,'CORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840
i

1974017617-044

ARRAYS

In any of the above declarations, regardless of data type,
the part of the declaration between the <name> and the
terminating semicolon which establishes the type (and

. {

possibly precision and size) constitutes the "attributes i
of the declaration. {

To declare an array of any data type an ARRAY specification
is inserted between the <name> and the attributes:

DECLARE <name> ARRAY(n) <attributes>;

i. <attributes> stands for any legal form of
attributes for any data type described.

2. n denotes the number of elements in the array
(i.e. entries in the table) and must lie in

! the range 1 < n _ 32768*.

Example s:

• :DECLARE AS 1 ARRAY (500) SCALAR;
:DECLARE AM1 ARRAY (20) MATRIX (4,4);

-1

, I
i i i •

* This value may be machine dependent. See Appendix I
for exceptions. I

4-8

INTPRM_TRICSINCORPORATED •701CONCORD AVENUE •cAMBRIDGE. MASSACHUSETTS 02138• (617)661-18401
i

1974017G17-045

I

I

| COMPOUNDDECLARATIONS
If a program contains declarations of many data items it is

"_ I tedi.ous to repeat the keyword DECLARE in every declaration.
Many separate declarations may be condensed into one compound
declaration as shown below.

l
Example :

i• j DECLARE S ;
DECLARE I INTEGER DOUBLE;

DECLARE M3 MATRIX ;

i J DECLARE M6 MATRIX (6,6); separate declarations

J DECLARE B BOOLEAN;J DECLARE C ARRAY (5) CHARACTER (20);

I J DECLARE V ARRAY (3) VECTOR;I

I } DECLARE S,
I INTEGER DOUBLE,

J M3 MATRIX,

I J M6 MATRIX (6,6) , equivalent compound
B BOOLEAN, declaration
C ARRAY(5) CHARACTER(20),

I V ARRAY (3) VECTOR;I

I Note the commas separating the declaration of each data item.

I If the identifiers in a compound
declaration have some attributes

I in common a third even morecompact form of declaration
called a factored declaration

! can be used.

• ' See_ (tl:_)

• |

, I
'1

4-9

r INTERMET CS INCORPORATED. 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

1974017617-046

4,3 INITIALIZATIONOFDATA

A "AL/S data item of any type may be initialized by incorporating
an INITIAL specification into its declaration statement. The
form of such a specification differs depending on whether the
data item is "uni-valued" or "multi-valued".

• UNI-VALUED data items are those having only one element:
unarrayed scalars, booleans, and characters.

• MULTI-VALUED data items are those having more than one
element: unarrayed vectors and matrices, and arrayed
data items of any type.

In either case, the INITIAL specification is placed after the type,
precision, and size attributes of a declaration. This positioning
will become apparent in the examples to follow.

UNI-VALUEDDATAITEMS
J.

The two variations of the form of INITIAL specification for
uni-valued data items are:

INITIAL (<value>)
CONSTANT (<value>) !

i. The two forms have the same effect in i
that the data item is initialized to)

the literal indicated by <value>.

2. T_ form using the keyword CONSTANT is i
required.,only if the user wishes not
to change the initial value during--

]execution*.

3. The type of the literal <value> must
be compatible with the type of the data l '_
item as determined from the following _
table:

: data type , literal valuein t t fl •

% CHARACTER character string

BOOLEAN boolean

SCALARINTEGER1 arithmetic s
ii |L ii _ _ _

.... il* In many respects a data item initialized this way is akin to
a literal.

4-i0 _,

- _, _.,n_ ^_,=',t|=• t"_t,._Rptlnnl::MASSACHUSETTS02138 • (617) 661-1840

1974017617-047

!

!
Examples :

!
DECLARE A SCALAR INITIAL (3),

B SCALAR CONSTANT (4.5E-3),

I I C CHARACTER(80) INITIAL('YES'),D BOOLEAN INITIAL (TRUE) ;
i

I _ Note: initial working length of C becomes 3.

|. MULTI-VALUEDDATAITEMS
There are two corresponding variations of the INITIAL specification

I for multi-valued data items:

I INITIAL (<value>, <value>,)CONSTANT (<value>, <value>,)

i I. The meaning of the keyword CONSTANT isthe same as for uni-valued data items.

2. The type of the literal <value> must be

I compatible with the type of the data item,as determined from the following table.

I data type literal value
, CHARACTER character string

BOOLEAN boolean

I INTEGERSCALAR 1

VECTOR I arithmetic| MATRIX

• 3. The number of <value>s in the list must

equal the total number of elements implied

i by the data declaration.
, ,

I Note that if all the elements of a multl-valued data item are to
be initialize_-_o the same value then the form used for uni-valued
data items may be used.

!

I 4-Ii

_' INTERMETRICSI;.ICORPORATED• 701 CONCORDAVENUE • CAMBRIDGE,MA_SACttUSETTS0213B • (617) 661-1840

I

1974017617-048

I
Examples : !

DECLARE V VECTOR INITIAL (i,2,3.5) |
S ARRAY(2) CONSTANT(I,0), I
T ARRAY(2) VECTOR(2) INITIAL(4.7,-5.3,0,0) ;

DECLARE V VECTOR INITIAL(0), |
S ARRAY (100) INTEGER INITIAL(256) ; I

all elements of these data i
items are identically

i

initialized. I

ORDEROFINITIALIZATION

I
To complete the specification of initialization the order of
initialization of the elements of multi-valued data _ m
needs to be defined. I

B

The following ordering rules, though applied here to the i

initialization of multi-valued data items, holds true when- |
ever the ordering of elements is called into question.

• VECTOR data items are initialized in order of increasing

index. | +

• MATRIX data items are initialized row by row in order of I
increasing index. I

• ARRAY data items are initialized array element by array element m '_
in order of increasing index. Where the array element are _
themselves multi-valued, each array element in turn is m 1
initialized completely according to the previous rules before

going on to the next. I

Example: I

DECLARE M ARRAY(2) MATRIX(2,2) INITIAL(I,2,3,4,5,6,7,8} ! _ .,-

if M 1 is the first array element, and M 2 is the second, then: I

.I- . .,- I
4-12 - " " .

...... ,-,,-,.-r,-rt "m, r'm ,+",',mn• x,l=_,,,Ii: • r'A_ _l=lRinnl=:MASSACHUSETTS02138 • (6171661-1840

1974017617-049

!

!

!

I Additional more compact initializationforms are _vailable if only partial #_
initialization is zequired, or if
subsets of the initial values are

identical. See. (tbd)

I

J 4,4 SUMMARY

Section 4 has dealt with how data is declared in HAL/S

compilations, and how it initialized. The next logical

step is to begin to discover how it may be used. However,this is put off until Section 6. Section 5 deals with a

useful HAL/S construch which allows the user to replace

frequently-repeated HAL/S expressions by defining and

i substituting a symbolic name.

Q_-dy of Section 5 can be omitted without detriment to the

_" undersu_nding of the remainder of Part I of the Guide.

7"

!

[

I b

t

!

r i
I

I 4-13

!NTF;_"_II=TnC$ ":CORPORATED. 701 CONCORD AVENUE •CAMBRIDGE MASSACHUSETTS 02138" 1617) 661-1840
4

1974017617-050

I

|

!
" 5, REPLACESTATEMENTS

i When it is necessary to repeat a particular HAL/S construct

n exactly many times during a program, the user can avoid the

tedious process of laboriously writing it at length each time

by defining a symbolic name to represent the construct, and

i then the construct with the symbolic
replacing name.

This kind of substitution can be of advantage in several

_ ways. For instance, the value of a literal recurring many times
- U can be easily changed between successive compilations. The user

need only define a symbolic name to represent the literal, then

i replace the one with the other. Only one line of the programneeds to be recoded as opposed to the many lines that would

need recoding if the user had to find and change the literal
each time it occurred.

The definition and substitution of the symbolic name is
accomplished by a REPLACE statement.

I .
5.1 THEREPLACESTATEMENT

! ,
The REPLACE statement is placed together with the data

declarations of the program, procedure, or function block in

I which it is to be used. It takes the form:
Q

!
I REPLACE <name> BY "XXXXXXXXXXX";

| 'i. XXXXXXX represents the HAL/S source text which
it is desired to substitute. The text is de- '

I limited by double quote marks, and must be 'written in single line format.

2. <ham6> is the symbolic name chosen to repre-

b _ sent the text. It may be any legal identifier
name.

i 3. XXXXXXXmay be any legal source text of arbi-• trary length. Imbedded double quote marks

must be represented as a pair of double quote i
marks to avoid confusion _ the delimiters.

|[i 4. The text must not begin or end in the middle
"I of a reserved word, identifier, literal, or
! imbedded comment.

5-1

NTERMETR_CG_NC_RP_RATED.7_1_NC_RDAV_NUE.CAM_R_DGE_MA3SACHUSE_S_2138_61_)661_

1974017617-051

Examples :
e

REPLACE OUTPUT BY "WRITE (6) " ;I

' REPLACE INCREMENT BY "X=X+I;";
I

5,2 USINGREPLACESTATEMENTS |
l

The following examples show the' way in which the symbol

substitution defined by the REPLACE statement is used. I
I

Examples :
!

' REPLACE DV BY "VECTOR DOUBLE INITIAL(0) "; II I, DECLARE VECI DV,
I VEC2 DV,
, VEC3 DV ; I
i I

- by expansion of DV it is evident that
VECI, VEC2, VEC3 are all double precision []
vectors initialized to zero. I

I, REPLACE N BY "4";
' DECLARE V1 VECTOR(N) ,
' M1 MATRIX (N,N) ,
I

, M2 MATRIX (2,N) ; I
S

- this shows the utility of the REPLAC_
statement in making it easy to change the •
isizes of several vectors and matrices I
simul taneou siy.

' REPLACE X BY "%_CTOR(2) ";| ",

, REPLACE Y BY "ARRAY(5) X"; _
I

' - this is an example of nested sub-
stitutions. The expansion of Y is i
ARRAY (5) VECTOR (2). _ ,

|i-0
I
o

, REPLACE X BY "REPLACE ¥ BY''Z'''_

i X; I, DECLARE Y SCALAR!

- although this is a legal use of REPLACE statements, it I
" does not lend itself to clarity. The Iequence of ICate-

Ients culminates in Z being declared ai a scalar data "'"

item. " I
I

5-2

IN1ERMETRICSINCORPORATED• 701 CONCORDAVENUE . CAMBRIDGE.MASSACHUSETTS02138 • (617) 681-1840 1 "
I

1974017617-052

!
I
I

!

A REPLACE statement takes effect only after it appears.
It does not modify the entire block, only that section that

i follows its appearance.
|

Example :
I

I i DECLARE V1 VECTOR(N);I REPLACE N BY "4 ";
J DECLARE V2 VECTOR(N);

! •I .

- the REPLACE statement will only be

I effective starting with the seconddeclaration statement• N is un-
known in the first declaration and

i compilation would detect the error.

Care must be taken in using REPLAC E 3tatements because

I th. ways in which they are affected by the block structureof the HAL/S program in which they appear are not always
obvious. -

I Example :

i REPLACE X BY "Y" ; / program/

-- " /Pzocedure block
i DECLARE X SCALAR; /

- the user must remember
B that the X of the local

I +. • declaration inside the
.... procedure block is still

subject to the REPLACE + +

I statement at the programlevel.

'1"t
I 5-3

| "INTERMETRICSINCORPORATED"701 CONCORDAVENUE * CAMBRIDGE,MASSACHUSETTS02138. 16171681-1840

1974017617-053

The only case in which a REPLACE statement in an outer block l #% ",

becomes ineffective in an inner block is when the inner block

has a REPLACE statement in it with the same nJme.

Example:, l

Program

I

Pr :lure block I

Pr :lure block I

I

region where X is I

replaced uy Y

region where" X is I

replaced by Z I

*_ ' I
Replace statements may also

]possess pexamete_.s, timing

them with a eo_nisticat_/ I! maczo exp_slon facility.
See: (_bl:l).

+ I

ti5-4

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 " (6171 661-1840 1 '+

1974017617-054

!

!

!

| 5.3 SUMMARY _,_,

Section 5 has dealt with a mechanism for symbolic replacement

I of HAL/S source text. Section 6 begins to examine the way in
which executable statements are constructed by describing how
data is referenced.

I

I

I

i

i

I
%

[i

i

i i
f

,I

I S-5 _"'""

f INTEnMETRICSINCORPOP_TED.701CONGOROAVENUE• _AMBR'DeE.MA_SAC_;USET'S02138. _6t7)661-1840 _ _,

1974017617-055

4
6, DATAREFERENCINGANDSUBSCRIPTING

Any appearance name a previously-declared
of the of dat_ item

in an executable statement constitutes a reference tc its value

(and possibly causes a change in its value)*. Sometimes it is

necessary to be able to reference elements of vectors, matrices,and arrays, and also to reference parts of character strings.

HAL/S has a wide range of subscript forms designed for this

purpose.
Two kinds of subscripting are relevant to the data types

. described in Section 4.

I • COMPONENT SUBSCRIPTING allows the user to select elements

or subsets of elements from vectors and matrices, and to

select substrings from character data items.

• ARRAY SUBSCRIPTING allows the user to select elements or

I subsets of elements from arrays of any data type.
Depending on the nature of a particular deta item, either or

i both kinds of subscripting may be affixed to it.

_ 6,i SUBSCRIPTSOFUNARRAYEDDATATYPES

• Unarrayed data types, i.e. those whose declarations contain no

array specification, may at most possess only component subscript-

_ ing. Unarrayed data items of integer, scalar, and Boolean

types may not possess any subscripting. Allowable subscripts

i or the remaining types, - character, vector, and matrix - are j
now each described in turn.

! ,

* This Section, for convenience, includes appearance ca_ sing }!
change in value under the term "reference", even though _

I this is not the most usual meaning of the term.

I
6-1

I 'INTERMETRICS INCORPORATED • 701 CONCORD AVENUE •CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840 -4 *' '

jw -. -. , ..

1974017617-056

CHARACTER

In a character data item, character positions are indexed left _&
to right starting from i. In the subscript forms given below,

STRING represents an unarrayed data item of character type with

current working length L.*

• To select the eth character from STRING:

STRING

i. _ is an integer expression in

the range 1 _ _ < L.

• To select _ characters from STRING, starting from the
8th:

STRING "
_AT 8

!
i. _ and 8 are integer expressions.

2. 8 is in the range 1 _< 8 <_ L.

!
3. _ is in the range 0 _< _ _ L - 8 + i.

1
] .

l!"
_ " In '_he ca_e where reference of a subscripted oharacter data I :1, type causes a change in its value (e.g. on the left hand side

I of an assignment), somewhat different interpretations of the _ -

subscript forms hold true. An account of these is given in lI
"I Section 8.2.

6-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (6171 661-1840

.-- . .
-IIW -. w w •

1974017617-057

I

I

I

I • To select a substring starting with the eth character _%
of STRING, and ending with the 6th:

I
STRING

aTO 6

I i. a and 8 are integer expressions in

the range 1 _< a, 6 _< L.

I 2. 8< a.

I

I Examples:
if the value of C is 'ABCDEF' then:

I C 5 is 'E'

C2 AT 2 is 'BC'

I
C4 TO 6 is 'DEF'

| VECTOR

I Elements of a vector are indexed starting from i. In
the following subscript forms, VEC represents an unarrayed

7 vector data item of length L. ,"

" I • To select the ath element from VEC:

I • , • n

_ v_c
ct

I I. _ is an integer e'.:pression in the
range 1 _< s _< L.

N 2. The resulting data type is SCALAR.

, n • n .n

I 6-3
............... ,,,,, ,,u,'('v-,D_mAT';'n. ?nl r':.QNr':NRf3AVFNUF •CAME_'31DGE MA££ACH! ISI::TTS02138 • (617_ 661-1840

P " ''' • " - "" w - •

i

1974017617-058

• To select an e-vector partition starting from the 8th
element of VEC:

VEC
eAT 8

i. _ is an integer literal value in

the range 2 _ 8 < L.
i

2. 8 is an integer expression in the

range 1 _ 8 < L - _ + i.

• To select a partition starting from the eth element of

VEC and ending with the Bth. {

VEC
TO B

i. s and 8 are integer literal values i
in the range 1 _< _, 8 _< L.

2. 8>_. I

Examples: }

if V = [4.5] then: :'i

19"31] '17.Zl
_ LB.?l _t

: _ V1 - 4.5 (scalar)

= .1 (2-vector) !

r

!
6-4

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (6|7) 661-1840 I

............ ill .. - , ,

1974017617-059

i
MATRIX

Rows and columns of a matrix are indexed starting from i.

Any matrix subscript must consist of a row subscript followed

I y a column subscript. In the following ibscript forms, MATrepresents an unarrayed M x N matrix data item.

i • To select the element of MAT common to the _th row and8th column:

I MATe, 8

i . _, S are integer expressions.

2. a is in the range 1 _< _ _< M,

I and 8 is in the range 1 _< 8 _< N.
3. The resultart data type is SCALAR.

I
i • To select the _th row of MAT:

i MATe ',

: i. _ is an integer expression in the

i range 1 _< a _< M.

2. The resultant data is N-VECTOR. _"

| "3. If the asterisk is replaced by a !

TO- or AT- subscript under the _,

rules given for VECTOR data t{_es, '
a vector partition from the _---|

_ row may be selected.

[......
f

6-5

" INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 _

- " I III , i
ii ii ! '

i , | ,

1974017617-060

• To select the 8th column of MAT: I

i. 8 is an integer expression in the i
range 1 4 B < N. |

2. The resultant data type is M-VECTOR.
|

3. If the asterisk is replaced by a

TO- or AT- partition under the

rules given for "TECTOR data types,

a vector partition from the 8th I

colu_m may be selected.

!
• TO select a _ x 7 matrix partition starting from the

8th row and 6th column of MAT: I

MATs AT 8, _ AT 6 I

i. _, ¥ are integer literal values in I
ranges 2 <_ e _< M, 2 _< y _< N

I

respectively.
I

2. 8,7 are integer expression in I

ranges 1 _< 8 _< M - _ + i,

_ 1 _< 6 -_ N - y + 1 respectively. _ ,%

_ +3. Either or both the AT- subscripts + "

may be replaced by TO- subscript_ _+

+_ andUnderMATRIxruleStypes.alreadygiven by VECTOR I _i +

4. Either of the AT- subscripts may in I
;_ addition be replaced by an asterisk _
+_ if all M rows or all N columns are

to be included in the partition.

' !
I ,
" 6-G

+ |!," ,','_,',, ,='rmlc'q INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840
+

I / '

1974017617-061

I Examples :

Lif M i.i 1.2= i. 3 then :

I 1 2.2 2.3:i 3.2 3.

i M2,3 = 2.3 (scalar)
Fl.ll (3-vector)

M*,l=12.1l
' | U-If

= F2.2] (2-vector)
M2,:2To3 I_2.3_II

, 2 AT 1 2.1 2.2

11 L3._ 3,2

= [12 1 1.2] (2x2 matrix)
I M1 TO 2, 1 TO 2 :i 2.

I

I

|
#

|

|
6-7

I TNTERMETRLCS_/'ORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617; 661-1840

1974017617-062

6.2 SUBSCRIPTSOFARRAYEDDATATYPES |

Arrayed data types, i.e. those whose declarations contain
an array specification, may possess array subscripting.

If the data types are vector, matrix, or character, then
J they may, in addition, possess component subscripting.

ARRAYSUBSCRIPTINGONLY I

|
Arrays are indexed starting from 1. In the array subscript |
forms given below, TABLE represents an array of length L
of any data type. |

• To select the _th array element from TABLE:

TABLE : I

i. _ is an integer expression in the
range 1 _< e _< L.

2. The colon is optional if the data "_
type of TABLE is INTEGER or SCALAR.

!
• To select a sub-array of length a starting from the 8th

. array element of TABLE:

I. _ is an integer literal value in the _ ;
rangeJ

2. 8 i_ an integer expression in the
range 1< 8 _ L - a + i.

3. The colon is o_ionzl if the data

type of TABLE -"'_isIN2EGER or SCALAR. ,
nn m • m • _ n , n n u n A

| "INTERMETRICSINCORPORATED• 701CONCORDAVENUE • CAMBR'_C_ _' "'CHUSETTS 02138 • 1617)661-1840

P
.... " " " II II I -- --. = -

1974017617-063

I
• TO select a sup-array starting from the eth array

I element of TABTE and ending with the _ th. _&

I TO 8:
TABLE s

I i. _, 8 are integer literal valuesin the range 1 { _, 8 { L.

i 2. _.
3. The colon is optional if the data

I type of TABLE is INTEGER or SCALAR.

I
Examples:

I if T is a 4-array of booleans with values(TRUE, FALSE, TRUE, TRUE) then:

I T 2 : is FALSE (unarrayed)

T3 TO 4: is (TRUE,TRUE) (still arrayed)

I if T is a 4-array of integers with values
(1,2,3,4) then:

I T 2 is 2 (unarrayed) I optional colon

T3'TO 4 is (3,4) (still arrayed) } omitted

if C is a 3-array of characters, with values

I ('YES','NO' 'MAYBE') then:

C1. is 'YES' (sel0cts first array elementl

I C2 _ 3: is ('NO','MAYBE') (still arrayed)

f

I
6-9

I INTFF_METRICSI_COf_PORATED • _01 COI_CO_:10AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 6_1-1840 _'

i

1974017617-064

ARRAYANDCOMPONENTSUBSCRIPTING

If TABLE represents an array of vector, matrix, or character

data type, then the following rule shows how array and

component subscripting are juxtaposed. I
!

TABLE<array ss>:<component ss>

i. <array ss>: represents array sub- |

scripting of any of the forms i
previously described.

2. <component ss> represents any form

of component subscripting legal

for the data type of TABLE, as
described in Section 6.1.

The purpose of the colon now becomes clear: it is required
to distinguish and separate array and component subscripting.

Examples :

tif C is a 3-array of characters, with values
t,YES ', 'NO ','MAYBE ') then:

C3. 3 is 'Y' (selects 3rd character from third I
array element) • .

if M is a 2-array of 2x2 matrices with values _| '_
6

of second array element)

],

6-10 1

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE" CAMBRIDGE, MASSACHUSETTS 02138" (617)881-1840[} | _'
w_ !I

1974017617-065

|

i

I

I. Apparently, the colon should be

optional on Boolean data types

i also. It is not because theBoolean data type is a degener-

ate case of a bit string data

type which may possess com-

I ponent subscripting.See: (tbd).

!
| COMPOtlENTSUBSCRIPTINGONLY
|

When an arrayed data item of vector, matrix or character

I type is required to be given only component subscripting,array subscripting cannot be totally omitted. Rather, it
must be replaced by an asterisk. Let TABLE represent such

i a data item; the subscripting form is then required to be:

I TABLE, : <component ss>

i. <component ss> represents any form

I of component subscripting legal forthe data type of TABLE, as described
in Section 6.1.

I , , ,

if C is a 3-array of characters with values
! ('YES' 'NO' 'MAYBE')then:

i t C,: 1 is ('Y' ,'N' ,'M') (makes 3-array from first character
of each item)

,[if M ig a 2-array of 2x2 matrices with values •

. M,_l, 1 = (1,5) (2-array of scalars)

(I lI:l) i"M,:,,2 = , (2-array of 2-vectors)

(6-11 .,

INTIFqMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, tvtASSACHUSET'rS 02138 • (617) 661-1840 1
I

1974017617-066

r

HAL/S allows more general forms of

subscript expressions than just
those stated in Section 6. _n

addition, a symbolic form of

reference to the last array or

other element of a data type is

allowed. Even more complex

forms of subscripts apply to parts

of tree organizations of data

('structures').

See: (tbd)
%

6,3 SUMMARY

This section has comprehensively described the formq of

uubscripting available in HAL/S. At this point in the Guide,
sufficient information has been given to allow the user to be Y

able to reference different kinds of data. Section 7 shows

how operations may be performed on tlle data so referenced.

I

I '
,]

i

3
;I

6-12

• • _ %_.......... ,--,,,,-¢=_z_nnpnnATl=n • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (6171 661-11340 !

1974017617-067

i

#

,, 7, EXPRESSIONS
,4

Section 6 dealt with the referencing of declared data items.

, At this point it is appropriate to describe how the valut_s of

these data items can be manipulatcd. In HAL/S the construct

• which specifies operations on data items is called an EXPRESSION*.

" In many cases it is very close in form to the generally accepted
notion of a mathematical expression.

i sequences of o[erations, possibly paren-
Expressions consist of

thesized in places to override the precedence rules of HAL/F.

Each operation is comprised of one or two operands and an operator.

This section begins by describing the legal HAL/S _perations, andthen continues to show how they are combined into e _ressions.

i Previous sections of the Guide have divided data items and literalsinto three broad classes: arithmetic, character, and Boolean.

It is convenient to divide the operations to be described into the

i same three classes. The type of an expression is the type of thevalue resulting from its execution, and may, in general, be

different from the types of some of its operands.

F

I 7,i ARITHMETICOPERATIONS

Arithmetic operations are the most numerous of all operations
in the HAL/S language. They comprise operations on vector, matrix,

- integer, and scalar data types. HAL/S recognizes the foll_wing

operations:

• L

i

[i
r

#

The i_oring of the resut of a HAL/S ZXPP_SSION into a data
item ii performed by an _,_IGNM_,NT _tatoment, of which the _'_,,.

[EXPRESSION forms a part.

____r 7-I _'• _'ET_'_3 iN:ORPORATED" 701 CONCORD AVENUE •CAMBRIDGE, MA.'.'.'.'.'.'.'.'.'_CHUSETTS02138 " (617) 661-1840
!

. .. _ .. _ . .

1974017617-068

!

m.

Symbc i Purpose b*

•* exponentiation, inversion,
transposition

(blank) multiplication

• vector cross product

• vector dot product

/ division

+ addition

- subtraction, negation

NEGATION
Negation is a binary operation applicable to any arit)auetic
data type :

Symbolic form: - R

I. The legal data types _or R are given
by the following table:

R-type

MATRIX I
VECTOR
SCALAR

INTEGER "! J
2. Negation of vector and matrix types

-I

implies element-by_lement negatlon.. _!|

Examples:
"I

if I is an int_er and I -- S

then -I - -5 . _;

if V is a 3-v_toz and V "-- _t'_"*,
tS.

[_1-51
and - v --14.21 It S.lJ

7-2 I _'_,TP'r_,4P'rntC_INCORPORATED• 701 CONCORDAVENUE • CAMBRIDGE.,u_._CHUSE'rrs o=13e• (617) 661.1840

1974017617-069

| ADDITIONA_DSUBTRACTIOr'_

I Addition and subtraction can only take place between compatible
arithmetic data types:

|
Symbolic form: L ± R

I i. The legal combinations of data types

are indicated by the following table:%

LL -t_Pe R -type

MATRIX MATRIX

i _CTOR VECTOR

SCALAR _ { SCALARINTEGER [INTEGER

I 2. Operations on matrix and vector operands

imply element-by-element addition and

I subtraction.

3. The operands in a matrix addition or
subtraction must have the same row and

J cglumn dimens-_s.

4. The operands in a vector addition or

subtraction must have the same lengths.

5. In a mixed integer-scalar operation, the

result is scalar. The integer operand isfirst converted to single precision

scalar, i,

|

4. 1

1974017617-070

I

Examples -

If I is integer with I _--5

S is scalar with S _=-4.2

then

I + 1 L-- 6 (integer result)

I + 0.5 _ 5.5 (scalar result)

S + 1 = -3.2 (scalar result)

I - S - 9.2 (scalar result)

if Vl is a 3-vector with Vl- [-1.01
I-2.Sl
L 3.2J

v2 is a 4-vector with V2 - [0.5]

I0 1
1-2.2/
L1 • 5J

then the operation Vl + V2 is illegal because the lengths of
Vl, V2 do not match;

but {

V1- V21 TO 3- [-1.5] is legal because subscripting "

' [_.I-2" of the R operand has produced _} '_Io a 3-vector. _ °

f

Using S, Vl above,

t S + Vl is illegal because the types are incompatible_ [z

but S + V13 - -I.0 is legal and has a scalar result because
' subscripting has changed the R operand to ,
{ scalar type. -] '

7-4

• - INIERMETRICSINCORPORATED• 701 CONCORDAVENUE • CAMBRIDGE,MASSACHUSETTS02138 • 1617) 661-1840

1974017617-071

l
I

I
I if M1 is a 3 x 2 matrix with M1 -- [1.0 0 I

L-o.-o.Ol
m

I M2 is a 2 x 2 matrix with M2 - [0.5 -0.51
[i.0 1.01

I then M1 - M2 is illegal because the row dimensions of the
operands do not match;

J

I but, M1 - M2 =| 0.5 0.5| is legal because the
2 AT i,* -, 'g

|-1.5 -2.0J number of rows in the

i operand have been

B reduced to 2 by sub-
| scripting.

| DIVISION
In division, the dividend may be any data type, but the divisor

must either be integer or scalar.

| _ _
S_olic form: [/R J

I i. T_e legal combinations of data types are J
I

given by the following table: J

I [-type J R -type :
MATRIX)1i

i V_.CTOR_l,r SCALAR
_ SCALAR _ J _ INTEGER "

INTEGER i I . _ i

I 2. If the dividend is of matrix or vctor

type, element-by-element division by the
R operand is implied.

3. If either or both operands are of integer

type, they are first converted to scalarm

i type.

I
. II ,_lrcn_Ar'ra: "_qI:,C:(3RPOR; FD • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617 £_;:-1840

1974017617-072

Example s :

1/2 =- 0.5 (both integer operands converted to scalar)

if V is a 3-vector with V- [!!!I

_ __s°_-x_°=_xw___[_-°o._-°_1o:o I
S is a scalar with S - 0.5

em

then S/M is illegal since the . operand may not be of matrix I

type,

but M/S - [2.0 -i0_ _:°I !
DOTPRODUCT |

The HAL/S dot product operation corresponds to the mathematical |

dot or inner product of two vectors. In mathematical notation: I

S = <Uw V> or s - uTv I
!

where u, v are column vectors and ienotes the transpose.

Note that HAL/S does not require the user to distinguish between I

row and column vectors b----ecausethe position of the operand in the
I

operation is sufficient in itself to allow it to be interpreted

• as one or the other. I _

Symbolic form: i . R

I. The operands of the dot product must be
as shown:

L-type 1 R-tYpe]VECTOR VECTOR

2. The lengths of each operand must be
the same. ------ I

f

3. The result is of scalar type.

• , = . , H j _ _L_L _

!
7-6

............ ,","_r*nr',,",hTl::n. 7nl ,'.r3N_C_RD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • 16171661-1840

i

1974017617-073

i

I

I

I Example :

If V is a 3-vector with V -= [-!'!l
! .
I then V.V = 1.5

- I CROSSPRODUCT
The HAL/S cross product operation corresponds to the mathematical

i vector cross product in 3-dimensional Euclidean space:
if w is perpendicular to u, v

8_ as shown,

I _'_ and lwl- lullvlsinthen w = u x v

I Sym'bolic form: t * R

I i. THe type of the operands must be vector:

I , L .type I R -type
!

VECTOR I V_CTOR

I 2. Both operands mus-_ be of length 3.
3. The result :_ a 3-vactor.

'1

:' I 7-7 _,INTFRMETP,1CSINCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840
a

mm - w- . . -. w . .

1974017617-074

I

MULTIPLICATION |

The HAL/S language has no explicit symbol for multiplication: Ithe adjacency of two operands signifies this operation. Multi-

pli_ation can take place with arithmetic operands of any type:

• If operand types are either integer or scalar, multiplication i

in the regular arithmetic sense is implied; ...CASE @

• if one operand is integer or scalar, and the other vector or Imatrix, then e]ement-by-element multiplication is implied;

...CASE @

• if both operands are vectors then the outer product is implied, I

the result being a matrix; ...CASE Q

• if both operands are matrices, the matrix product is implied; I
...CASE @

• if one operand is a matrix, and the other a vector, then Ia vector-matrix product is implied, the result being a

vector CASE @

The symbolic form for multiplication is as shown: I

Symbolic form: L R" I

I. At least one blank character must !

separate the i and R operandi. I i

IThe additional rules applicable to each of the cases _escribed above

_re now listed in turn. , i

I

7-B

IINTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETT8 _1_ • (817) _1-1_0 _'

i

1974017617-075

i
CASE Q

| p
I 2. The operand types are:

R .L-type I R -type
|

I_TECER_I_ INTEGER
SCALAR _11 SCALAR

I 3. If both operands are integer, the
result is integer, otherwise it is

i scalar.
l

4. If one operand is integer, then it
it first converted to single precisioni

, _ scalar.
U

i Example:

If I is integer %_ith I - i0

l then 1.5E-2 I _ 0.15 (scalar result)

!
i 2. The operand types are:

t

i -type , _R -type

' i INTEGER_ {VECTOR ,SCALAR _ MATRIX ,

VECTOR INTEGER !

_ MATRIX SCALAR i

I 3. Element-by-element multiplication
of the vector or matrix is implied.

_ I 4. If an operand is of integer type, it
it first converted to single precision
scalar.

?

7-9

I INTERMETRICSINCORPORATED"701 CONCORDAVENUE "CAMBRIDGE,MASSACHUSETTS02138 " (R17)
661-1840

1974017617-076

I

t

I

Examples : I

if S is scalar with S _ 1.5-

M is a 2 x 2 matrix with M -=[0 0.3] I- .i 0.4J

the:, S M --I 0 0 45J I-0.15 0[

and M S -[0 0.45] I-0.15 0.

2. The operand types are: I

L-type I R-type IVECTOR VECTOR

3. If the L-operand is of length m,
and the R operand is o_ length n, |
the result is an m x n matrix. I

t

Examples : I

If V1 is a 3-vector with Vl= [l.[-l'i]l. _ I
V2 is a 2-vector with V2-l_:il _ il

.6 o.6j , _

!
!

7-I0

- I_'X;nUFTR_C_INCORPORATED •701CONCORD AVENUE •CAMBRIDGE. MASSACHUS£775 02138•(617)661-1840_

1974017617-077

b

CASE Q

2. The operand types are:

[-type I R-type

MATRIX I MATRIX

- _ 3. The number of columns in the

L operand must equal the number of

rows in the R operand.

{

4. If the i operand is an m x n matrix

and the R operand is an n x p matrix,

i an m x p
the result is matrix.

_i Examples :

1

I then M1 M2- [00 0:7535 I (2 x 2 matrix) _'

and M2 M1 [0.25-0.25 0.5] (3 x 3 matrix)I 0. -0.5 1.00.5 -0.5 1.0

I Note that by using partitioning subscripts that

:'_ M]*,2 TO 3 M2 is illegal because of dimension mismatch;

o.51
_5 -0.5 J

. !
!

7-II

INY£RM£TR! ?'_INCORPORATED •701 CONCORD AVENUE •CAMBRIDGE. MASSACHUSETTS 02138 •(617)661-1840

.

i

1974017617-078

CASE® I *'
2. The operand types are:

_type _type

VECTOR MATRIX

MATRIX VECTOR !
i

3. If the L operand is an m x n matrix,

the R operand must be an n-vector, 7
and the result is an m-vector. !

4. If the L operand is an m x n matrix,

the R operand must be an m-vector, and |
the result is an n-vector.

!

Note that the position of the vector operand again determines

its interpretation as either a row or column vector.

Examples: .

If M is a 3 x 2 matrix with M 5 [0.5 1.0]

1.01
2 0.4J T

a
then V M - 0. (2-vector) ,

0. i

and M V is illegal because of dimension mismatch! |

P
%

i_ _,_,'

7-12 I

INTERMETRICS INCORPORATED .701 CONCORD AVENUE .CAMBRIDGE. MASSACHUSETTS 02138 . (617) 661-1640111 I

BIm , ,w . v . " • - - w -- ,

i

1974017617-079

I
EXPONENTIATIOiq,INVERSIONANDTRAIJSPOSE

In HAL/S, a single operator serves for exponentiation, matrix

inversion, and matrix transpose, the operand types serving todistringuish between there.

I • If both operands are integer or scalar, then exponentiation Qis implied; ...CASE

• if the left operand is a square matrix, and the right is

I an integer-valued iiteral, a repeated matrix product or repeated

product of inverse is implied; ...CASE Q

I • if the left operand is a matrix, and the right ope_and is
the character 'T', then the transpose is implied CASE Q

I These operations take the general symbolic form:

Symbolic form: L '' R

I i. This is the one-line format version.

In multi-line format the operator symbol

is omitted and R is placed on an exponent

I line. See Section 2.3.

I
The rules fo_ each of the cases listed above are now described in
turn.

I
I

I
r

I

l
7-13

I INTE_,_ETRIC _ ='_CORPORATED • 701 CO,_'CORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • _617) 661-1840

IU_ ' . = . .

1974017617-080

CASE Q _ #_

2. The operand types are:

L -type___ R -type |
I

INTEGER} IIN_EGERSC,_/AR SCALAR
|

3. If the i operand is integer and I
the R operand is a non-negative
integral-valued literal, then the t
result is integer, otherwise it is !
scalar.

4. Consistent with Rule 3, if the result I
is scalar, then any integer operands

t

are first converted to single-precision

scalar.

Example s: ;

If I is an integer with I - 5

then I ** 2 - i0 (integer result) l

and I**-I -- 0.2 (scalar result)]
7

al_ 2,*L,5- _ (scalar result)

] ,
t I

,,. |i
' !I

1

7-14

| "INTERMETRICSINCORPORATED,701 CONCORDAVENUE • CAMBRIDGE.MAS,._IkCHUSlETTS02138 • 1617)661-11140 " '

1974017617-081

i

2. The operand types are:|

I A-typ e I R-type

l ,ATR_xI _NTEG_R
3. The i operand is a square matrix.

I 4. The R operand is an integral-valuedliteral. The following table shows
the effect of different ranges of

I values of the R operand:
value result

I <_ - 2 repeated product of inverse
-I inverse

I 0 unit matrix
1 . no-operation

I > 2 repeated product

! ,
Examples:

! 011If M is a 2 _ 2 matrix with M 3 | 0.5

!-0.5 _ ,

I ':'" "_ =l:_,:__ .°'_!o. '

I """° : It° °.°I

I 7-15

I INTERIVIETRICSINCORPORATEO• 701 CONCOROAVENUE • CAMBRIDGE.MASSACHUSETTS02138 • (6t7) 661-1840
! !

1974017617-082

cAs_.(_) _

2. The operdnd Lypes _re:

• '-__-type I R -typ__

MATRIX 1 T

3. If the [operand is an m x n matrix,
then the result is an n x m matrix.

4. If R is symbolically T, then transpose
is indicated even if T i_ a declared
data item.

Examples:

_f M is a 2 x 3 matrix with M- [i.02.0 O0 4:301

t3.0 4.

[::1 ,i
3

then v T is illegal bocause the L operand is not matrix t_. I

The transpose of a vector is not needed] in the HAL/S language.

Q

!
#

7-16 I

,','rno,r.tn,r.e'_'C(%RPORATED.701CONCORD AVENUE .CAMBRIDGE. MASSACI'tUe_ETTS02138. (61"/')66:-1_0_ i

1974017617-083

!

!

!

I NOTEONPRECISIOI,ICOI,_VERSION _

I It is possible that the precisions of the two operands may differin any cf the operations described. In these cases, preclsion

conversion usually takes place before the operation is executed.

I The rules under which it takes place are as follows: [

±. NO precision conversion is possible inunary operations: transposition is

considered a unary operahion.

2. Where an operation specifies type con-
version from integer to single precision
scalar, this conversion is carried out

first.

3. If only one operand is integer and no

• _ type conversion is implied, no precl_ion

| conversion takes place.

4. If both operands have the same precision,

the result is of the same precision (even
if not of the same type).

I 5. If the operands have mixed precision, thesingle precision operand is converted to

double precision. Then rule 4 is applied.

!
| ,

I '
¢

| *"

I j -
F

7-17

i

!NTF_ _CTI_I,"_ i' _CORPORATEO•701 CONCORD Ak'ENUE •CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974017617-084

7,2 CHARACTEROPERATIONS

There is only one character operation in HAL/S: concatenation

of character strings.

Symbol Purpose

)II catenation
CAT

CATENATION

The utility of catenating character strings is obvious in

the generation of output listings. The rules related to

the catenation operation are as follows:

Symbolic form: i II k
CAT

i. The i and R operands are not just

restricted to character type: some

degree of implicit type conversion

is allowed. The following t_pes are

legal.

i-type R -ty'2e ,

INTEGER _ (INTEGER I
scAn_ _ _SCALAR 1
CHARACTER! _CHARACTER _ L

2. The rules for converting inte%er and

_. scalar types to character type are to i
be found in Appendix . t

, L I I I

7-18

1 "INTERMETRICS INCORPOFIATED • 701 CONCORD AVENUE • C_MBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

1974017617-085

""'_ m

!

!
Examples :

I If C is a character item with C -'UNITS'

I is integer with I -10

I then 'TEN' II C _ 'TEN UNITS'

I i IIc =- '].oUNITS'
and I II i _= ,lO 1o'

I

!

I

I

I

I

!

!

I
7-19

I INTFRMETRIC$ INCORPORATED •701 CONCORn AVENUE •CAMBRIDGE, MASSACHUSETTS 02138 •(817)661-1840

1974017617-086

f
7,3 BOOLEANOPERATIONS

Boolean operations are logical (binary) transformations on Boolean

operands. HAL/S recognizes the following operations: m

I

Symbol Purpose

& } logical intersectionAND -_
I

I } logical conjunctionOR

1NOT logical complement q

COMPLEMENT

The complement operation complements the logical value of a

Boolean operand. It takes the following form.

Symbolic form: _ R INOT
I

1. The R operand is of Boolean type. I

Example:

If B is Boolean with B -TRUE _

then -B - FALSE _ 1

J

7-20 _ 1

INTERMETRICS iNCORFORATED • 701 CONCORD AVENUE •CAMBRIDGE, MASSACH' '_ETTS 02138. (617) 661-1840 tl i _:
i

1974017617-087

I CONJUNCTION

The conjunction operation causes the logical v_lues of two

Boolean operands to be OR'ed together.

"I
Symbolic form: L I ROR

i. The i and R operands are of Boolean type.

' 2. The truth table for the resulting Boolean

I is as follows:

T=TRUE i

I F=FALSE T F
, . L

I R T T T
F T F

I ,,,

I
Examples :

I If B is Boolean with B =- FALSE

then BIB -- FALSE

_- I B ITRUE = TRUE

7-21

INTERMEi tIICSINCORPORATED •701 cONCORD AVENUE •CAMBRIDGE, MASSACHUSETTS 02138 •(617)661-1840

l

1974017617-088

I

INTERSECTION i J"

The intersection operation causes the logical values of two |
Boolean operands to be AND'ed together. I

Symbolic form: i AND& R I

i. The i and R -perands are of Boolean type. I
2. The truth table for the resultin9 Boolean

is as follows:

T=TRUE L I

F=FALSE T F

R T T F

F I F F

,I |

!

Examples: I
If B is Boolean with B -FALSE

then B&TRUE -- FALSE I

B&B -= FALSE "_

1 '
I ;

!

1
7-22

] '........ -,-n,,.-,-,,.,c.mnnn,'-,AT_n. 7nl r'_h'CnRD AVFNUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) $61-1840

1974017617-089

7,4 COMBININGOPERATIONS& PRECEDENCE

It is obviously desirable to be able to confine operations so

as to create expressicns of any required complexity. In combining

operations, the following information is necessary:

• The order in which operations are executed (the order

of "precedence");

• the way in which the precedence order can be overriden.

ARITHMETICANDCHARACTERPRECEDENCE
i

The precedence of HAL/S operations on arithmetic and character

data types are shown in the following table:

Symbol Precedence Purpose

FIRST

- ** 1 exponentiation, etc.

(blank) 2 multiplication

* 3 cross product

• 4 dot product
/ " division
+ 6 addition

- 6 subtraction, negation

II, CAT 7 catenation .
*AST

|

- Two rules clarify and modify this information:

-- • Sequences of operations of the same precedence are evaluated 1

left to right, except for ** and /, which are evaluated right

I to left.

e Sequences of multiplications are sometimes reordered to minimize _

i the number of elemental products required.

_I 7-23 '"

i INTERMETRICS INCORPORATED •701 CONCORD A_,L:NUE •CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 _ _

1974017617-090

Examples:

In the following expression, the numbered pointers show (_the order of execution of operations:

'_SULTo_STEP'IINII'lS'IlSl `Vl.V2/2/_ |

BOOLEANPRECEDENCE .

The precedence rules for Boolean ope ationsr are stated separately
because there are no _plicit conversions causing interaction
with arit_etic and character operations.

IC_b°iIPrecedenceIPurp°se 1 '

i I FI_T I i !
| ", NOT _ i I complement i
; &, _D | 2 I intersection |

|

Sequences of operations of the s_e precedence are evaluated
left to riqht.]

Ex_ples : |

L

In the following expression, the numbered _inters show the |] '_order of execution of operations:

t

. g
1

7-24

] '
,.,._¢.._T_.lo_ ,_lr'nRpnNAT_n •701 CONCORDAVENUE •CAMBRIDGE,MASSACHUSE_S 02138 • (6171 661-1840

I

1974017617-091

i
|
w

| OVERRIDINGPRECEDENCEORDER

I In HAL/S, the order of precedence can be overriden at will bythe use of parentheses, nested to any arbitrary aeptn.

I Examples:
In the following Boolean expression,

I BI{B2 & B3{B4 & B5

l parentheses may change the precedence order as shown:

I In the following arithmetic expression,

_- parentheses may change the precedence order as shown:

" |

I

I
7-25

IN [ERMET_ S INCORPORATED • 701 CONCORO AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974017617-092

I

7,5 SOMEEXPLICITCONVERSIONS | P

As evidenced in Section 7, there are few implicit type conversionsin the HAL/S language. However, there is a comprehensive rar_ge of

explicit conversions, some of which are now described.

PRECISIONCONVERSION I
Any arithmetic expression may have its precision explicitly I
changed as follows:

I
(<expression>)@ DOUBLE

(<e_pression>)@ SINGLE I

i. In the first form, if <expression> is Ia single precision arithmetic precision,
it is converted to double precision.

If it is already double precision, the Iconversion has no effect.

2. In the second form, if <expression> is

a double precision arithmetic expression I
, it is rounded to single precision. If

it is already single precision, the

conversion has no effect, i -°

% l

Example: I '

If A an_ B are single precision, then the result of

(A + B)@ DOUBLE

is double precision, the type remaining unchanged. I

7-26

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 021e,38• (617) 661.1840

I

1974017617-093

!

| VECTORCONVERSION

i A vector can be synth6 ized from a list of scalar or integerexpressions using the construct shown in the following table:

I (<exp>, <exp>)VECTOR n

I. The subscript number n specifies the

I length vector to created,
of the be and

lies in the range 1 < n < 16".

-'_ _ 2. If n is omitted the resulting vector is
I assumed to be of length 3.

I 3. Each <exp> is a scalar or integerexpression.

4. The number of expressions in the list

I mus____tmatch the implicit or explicit
result length.

I 5. The result of the above conversion is insingle precision.

I 6. The matrix is assembled row by row fromthe list.

Examples:

, VECTOR(I, 2, 3) , 'I

= zreates a 3-vector with value [_ ! _

i,|
t

I *Thisval_m=y be implementation dependent. See Appendix
for exceptions. _",_

7-2?

IINTERMETRICSINCORPORATED-701CONCORDAVENUE.CAMBRIDGE. MASSACHUSETTS021_.(617) _1-1840

1974017617-094

if S is a scalar with S =_0.5 then

VECTOR 4 (S, S2, S+I, 0)

creates a 4-vector with value [ii!5]

Note that even if the arguments are double precision the result

is in single precision. To specify double precision in a vector
conversion, the following modified form is used:

VECTOR@ DOUBLE, n (<exp>, <exp>)

I. The meanings of <exp> and n are as before.

2. If n is not specified, the preceding comma
is also omitted.

Examples:

VECTOR@ DOUBLE(I' 2, 3) I

creates a double precision }-,;_,,-_:,e:"with val_e [i]
4

vEC_ReDOUBLE,4(1, 2, .',,4) .] 1
i

1,
!

"/-28 i '

INTERMETRICS INCORPORATED .701 CONCORD AVENUE .CAMBRIDGE, MASC-.-.-_CHUSETTS02138 . (617) 661-1840_, ;
I

1974017617-095

i MATRIX COI_VERSION

There exists a method of synthesizing a matrix from a list of _
I integer or scalar expressions analogous to the vc_.tor conversion

described:

MATRIX (<exp>, <exp>,) J
m, n

i. The subscript numbers m, n specify the
row and column dintensions of the matrix

I to be created, and must lie in the range1 < m, n < 16".

i 2. The subscript may be omitted, in which
| cdr.e the resulting matrlx is assumed to

be 3 by 3.

I 3. Each <exp> is a scalar or integer
expression.

i 4. The number of expressions must m_tch thetotal number of elements in the resulting
matrix.

I 5. The result of the above conversion is in
single precision.

| ' .

!
! ,6

i
I
i may '_aplementation depend..t. See Appendix

b This v a'iue be

for exceptlons. _- _-,,,:

I 7-29

I INTERMETRICSINCORPORATED• 701CONCORDAVENUE • CAMBRIDGE,MASSACHUSETTS02138 • (617) 661-1840 _

1974017617-096

P

Ex amp le s:

MnTR!X(I, 2, 3, 4, 5, 6, 7, 8, 9)

oreox rwvuo[i 8 9._

MATRIX2, 3(1.5, 0, 0, 0, 0.5, 0_

0]creates a 2 x 3 matrix with value ,_.5 0
0.5

Note the order of assemhl> in each case.

As in the case of vector conversion, a modifi_ form is _'equired
if the result is to be in double precision-

(<exp>, <_Xp>MATRIX_ DOUBLE, m, n

1; The meanings of m, n and <exp> are as
before.

2. If the dimension subscript is _,itted, the

preceding comma is also omitted. 1
!w, =_ , ,

't

Examples: •I1 '
I

MATriX.• DOUBLE (I' 2, 3, 4, 5, 6, 7, 0, 9)

' creates a double precision 3 x 3 matrix with valu_ [I 2
, 4 5 ,

MATRIXA DOUBLE, 2, 311"5' 0, 0, 0, 0.S. 01 f-"

,,,'r,-,-,,,,:.TRICqI%_:NRP(3RATED• 701 CONCORDAVENUE • CAMBRIDGE,MASSACHUSETTS02138 - (617_ 66'- _84

1974017617-097

The explicit conversions desczibed

are those most cormmonly required fcr

numerical analysis. However, HAL/S

contains many other explicit con-

version function forms corresponding

to conversions between most data types.
See : tbd.

i

i

i B

m

m •

7,6 SUMMARY J

Section 7 has described how HAL/S expressions are synthesized

from operands and operators, and in what order such expressions

are executed. Expressions, particularly of integer and scalar

type, form parts of many HAL/S language constructs. Section 6

referred many times to the use of integer expressions in sub-

scripting.

Section 8 describes the assignment statement, which causes the

result of an expression to be stored in some data item or
items.

!

i

i i
f

I

I

!

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • C,AMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 _ _ ; '

1974017617-100

!
!
"" 8, ASSIGNMENTS(TBD)

!
8,1 ARITHMETICASSIGNMENTS(TBD)

!
8,2 CHARACTERASSIGNMENTS(TBD)

!
8,3 BOOLEANASSIGNMENTS(TBD)

| 8,4 SUMMARY(TBD)

!
!
!
!

, I8-1

! ,
........ _,r.c ,.,rmmDmmAT_r_. 7{31CONCORDAVENUE • CAMBRIDGE.MASSACHUSETTS02130 • (617) 661-1840 _

1974017617-101

!
__ 9, CONDITIONALSTATEMENTSANDBRANCHES
I
i Section 9 is primarily concerned with the HAL/S conditional

| statement, by which other executable statements may be

conditionally executed (or by which their execution may be

conditionally avoided). Together with statement groups,

I which will be described in Section i0, form crucially
they a

important part of the HAL/S language.

I The HAL/S language to avoid using
encourages programmers

: GO TO statements to cause branches in execution. Their

coral elimination, however, is not desirable. This

I Section therefore also describes the HAL/S GO TO state-ment, and statement labels, which are their destinations.

Statement labels are, in addition, needed for other constructs

i to be described in Section i0.

!
9,1 THECONDITIONALSTATEMENT

| ,
In HAL/S, the simple version of the conditional statement is

an "IF clause" containing an expression evaluable as either

I TRUE or FALSE, followed by a "true part" which is executed
only if the IF clause is TRUE. The simple version may be

augmented by an "ELSE part" which is executed only if the

I IF clause is FALSE.

i,
(

9-1

! ,
I",'r=I_I_A_TDI('Q INc'C_RF(3RATFD • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

1974017617-102

6
SIMPLEIFSTATEMENT

The form of the simple version is:

!

, IF <exp> THEN <statement>;
i

i. <exp> is an expression which is
evaluable as either T_IE or

?ALSE. It may be either a

BOOLEAN expression or a rela-

tional expression (these are

described in Section 9.2).

2. <statement> constitutes the true

part of the conditional statement.

Except as noted in Rule 3 it may

be any executable statement,

either simple or compound.

3. <statement> may not possess a
label, and may not be another
conditional stat--_ent.

!

4. If <exp> is FALSE, execution proceeds !
to the next statement. If TRUE,

<statement> is executed first.

_.

r

6 I ti .-

_] . _

]t
9-2 _.......... _'_"'_n_P_"'T_r.Tn*PnNPr_nAV_NIIF.CAMBRIDGE, MASSACHUSE_S021_.1617)_1.18401 "

1974017617-103

E_amples:

I
I IF BIC THEN X = 0;

i y= 1;
X is set to 0 if either B or C or both is true:

i the flow diagram for these events is:

|
evaluate

| BIc

I

i Yes

I
No

I Set

i X=0

I

!
I
I IF B IC THEN DO;
I X=X- i;

I I Y=Y+I;I END; _

The true part is a compound statement containing !
_ two assignments.

I i
I IF B THEN_IF C THEN D = 0_ ; -

I I Illegal because true part is a conditional statement," in violation of Rule 3. :

i
9-'3

II ,-,r,-.,.,r.',',",,,'.¢"..,r-r.,qpr, :_ATI=n• 7nl CONCORDAVENUE • CAMBRIDGE,MASSACHUSETTS02138 • 16171661-1840

1974017617-104

AUGMENTEDIFSTATEMENT

The IF statement when augmented with an ELSE part takes
the form:

I
j IF <exp> THEN <statement>;

I ELSE <else stmt>; |
!

i. The form of the IF clause and

true part are the same as in

the simple conditional stat6- |
ment. !

2. <else stmt> constitutes the

ELSE part of the conditional t
statement. It may be any
unlabel]ed executable state-

ment either simple or compound.

3. If <exp> is FALSE, execution

proceeds to the next statement
via <else stmt>. If TRUE, it

proceeds to the next statement
via <statement>.

&

I

i

!

9-4

" ". ""''m""_ ",," . -. r'-,,-'-,nn¢: .._,:,_C.HtI_I=TT_ 09138 . (617) 661-1840 tl "

1974017617-105

i Examples :

I

I I IF B IC THEN X = 0;| ELSE X = i; b_

I
X is set to 0 if B or C or both is true,

I otherwise X is set to i. The flow diagram
for these events is:

| _

I evaluate i

I .o_ _e_
• ,, , ,,

I

| ,,

I "l
ii • i

X-1 X-0

t --q]
I

I If Blc T_N DO;
X=I;

I I Y= 2;I END;

I ELSE DO;
X=2;

I I ¥= I;
I END;

t Here, both true and ELSE parts are compound
statements containing two assignments each.

t
9-5

i ,. ,,.,-,.... ',',,i,-,o ,_,_r'_:mnnATl::_.7_1 CONCORDAVENUE • CAMBRIDGE.MASSACHUSETTS02138 • (617) 661-1640 _

1974017617-106

i
i IF B THEN X = 0;

ELSE IS C THEN X = i; _
JY : 2; i
i

This is legal: the ELSE part of a conditional I
statement may itself be another conditional I
statement: the flow diagram for these events
is:

!
No TRUE Yes I

,
I

TRUE Yes Set IX=O

i
No

Set

XJl I

!
" 9,2 RE_TIONALEXPRESSIONS

I AS was stated in Section 9.1, there are two valid forms
J

of expression in an IF clause, BOOLEAN, and relational.

J BOOLEAN expressions were described in Section 7; relational
| expressions only appear in a limited n_ber of _L/S

constructs, among them conditional statements, and are now

i to be described.
The simplest fo_ of a relational expression is merely a

comparison between two like quantities. The result is

either TRUE or F_SE. More complex forms of relational
expressions result _rom combining comparisons with the

I BOOLEAN operators &, I, and _.

COMPACTt'/EOPE_TIONS

I HAL/S recognizes the following comparative operators:

i _

S_bol Purpose Class
-- t ,

I greater than
>

< less th_

I <= less th_ or equals

I }_ . • not greater than I

I • = greater th_ or eq_if '

_,, _ . < not less th_

- e_als

not e_alm

I l

,iI

9-7

I - _--_-.-cn ,nt rn_,r_n AVgN!IP •CAMBRIDGE. MASSACHUSE_S 021_ • (6171 M1-1_0

1974017617-108

The operands of comparative operations may, in general,

be expressions of any of the types lescribed in Secti<A 7.

Depending on the type of operand, the operators may be b_
restricted to Class II only, or may be either Class I or
Class II.

• CLASSIfONLY

Symbolic form: ': NOT=R

i. Legal combinations, of data types

are indicated by Uhe following
table:

L-type R-type

VECTOR VECTOR

MATRIX MATRIX

BOOLEAN BOOLEAN

CHARACTER CHARACTER

2. Comparison of vecuor and matrix

operands implies element-by-element

comparison.

3. The operands in a vector comparison

must be the same length.

4. The operands in a matrix comparison

must have the same row and column i
_l-m'ensions.

I

9-8

0.,T,.-,,, ,,-.,',-,,,-,o, ,r,,', _Dr__a'i_:13• 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840_ 1 '

1974017617-109

Examples:

If STRING is character type with #%

STRING H 'ABC '

STRING = 'PQR'

is FALSE.

STRING = 'ABC '

is FALSE - character strings must be of the same

length.

If V, W are 3-vectors with

then V = V1 is FALSE,

V1 - V = 2 V is TRUE.

If further V2 is a 2-vector with V2 ---Iii1
_ J

the,' V1 = V2 is illegal because of length mismatch,

but VI I TO 2 = V2 is TRUE.

4

t

9-9 j
INTERMETRICS INCORPORATED • 70t CONCORD AVENUE • CAMSPIDG5, MASSACHUSETTS 02138 • (617) 66'-1840 _'

1974017617-110

!

!

!

• CLASSI ANDCL#SSII _ b_

I>

<

>-_

<=

NOT >

Symbolic form: L _> R

NOT <

NOT =

I. Legal combinations of data types are
indicated by the following table:

L-type R-type

* INTEGER INTEGER
SCALAR SCALAR

2. In a mixed integer-scalar operation,
the integer operand is converted to q

scalar before the comparison takes
place.

• _ , i i

!

Example s: ".

If I is an integer with I - 5

than I - 5 Is 'fRUE
I

I < 4 is FALSE I

I >-5 is TRUE

! J

9-10 I

|t '

1974017617-111

NOTE O11 PRECISION CONVE.qSION #%

It. is possible that the precisions of the two operands

may differ in any of the operations described. In these

cases, precision conversion takes place before tD_ opera-

tion is executed. The rules under which it takes place
are as follows:

I. Where an operation specifies type

conversion from integer to single

precision scalar, this conversion
is carried out first.

2. If only one operand is integer and

no type conversi0n is implied, no
precision conversion takes place.

3. If both operands have the same

precision, the result is of the

same precision (even if not of

the same type).

4. If the operands have mixed precision,

the single precision operand is

converted to double precision. Then

rule 3 is applied.

i

9-11

INTERMETRICS INCORPORA]ED "701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 ._ _'
I

1974017617-112

I

COMBININGtOMPARATIVEOPERATIONS

Comparative operations may be combine_ as if they were

BOOLEAN operands, using the rules for_Boolean operations

described in Section 7. it is important to note however,

that comparative operations are not BOOLEAN operands in

the sense that they can be mixed with actual BOOLEAN data
items.

• Boolean expressions may contain no comparative operations.

• Relational expressions may contain no Boolean operands.

Examples :

If VI, V2 are 3-vectors with

and C is character with C - 'ABC'

then

Vl = V21C 1 = 'A' is TRUE

}

Vl = V2 & C 1 = 'A' is FALSE 1

If B is Boolea: then

BIVI = V2 is illegal T'I '

r

iI "

_T

g

, 9-12

" ,,,,,-_, ,rTnlr,,- Ir,,c'C_RPNRATFI3•),'i CC)NCQRD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840 1|

1974017617-113

I

|

!
PRECEDENCE

" |
The following table shows the precedence of operations

i involved in a relational expression:

I Symbol Precedence Purpose

i FIRST
operations involving1 operands of comparisons

| >
<

| _= j '
NOT >, _> _ 2 comparative

>= operationsI
NOT <, 4<

| = ,
NOT =, 4=

;. I &, AND 3 logical operations
I, OR 4 on comparisons

I 4, NOT *

" * Any operand of this operator must always'beparenthesized,

I and is evaluated immediately after evaluation of theoperator itself.

!

!
9-13

I ,.,_,-,,,_r:_rQIr'_ INC_RPORATED • 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

i

1974017617-114

t

Example: I

In the following expression, the numbered pointers show I
the order of execution of operations:

I
IF S1 + S2 = 0[_ ($3 > 0) & _ ($4 < 01S5 > 0) THEN

Section 9.2 ends with some more examples designed to

clarify the foregoing.

Example s:

Let V be a 3--vector with V - l]

| IF V = 1 & V = 2 THEN V = 0;
S 1 : 2 3
I
I IF V > 0 I V < 0 THEN V = 0;

is 3 2 _

The first statement will cause V 3 to be set to

zero since both comparisons are TRUE. Then -.

*_ In the second statement, neither comparison in the

relational expression is true. Hence, the "true

part" is not executed and finally

V -= 1

as before. 1

%' I

9-14 I

...............r_--.T=m •7ni CnNrnRn AVFNUE •CAMBRIDGE, MASSACHUSETTS 02138 • ',._17)661-1840_

1974017617-115

9,3 LABELSANDBRANCHES

In HAL/S, there are two entities connected with the

branching operation: the GO TO statement, which, when

executed causes the branch; an_ a "statement label"

which is the destination of such a branch. HAL/S

also uses statement labels for 9ther purposes, which
will become clear in Section i(.

LABELS

Labels are names chosen by the programmer and attached to

statements. More than one label may be attached to a

statement. The way of attaching a single label to a
statement is as follows:

!

, <l_bel>: <statement>;
I

i. <statement> is any executable

statement or statement group
(see Section i0), with two

exceptions.

2. <statement> may not be the

"true part" or "ELSE part" of
a conditional statement.

3. <label> is a user-defined
identifier name (see Section

2.2) . "_

9-15

INTERMETRICS INCONPORATED • 701 COHCC)t3DAVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840 _'

1974017617-116

i
Example s :

I ONE: X = X + i;
; TWO: Y = 0;

The following are illegal since they violate i
Rule 2 :

I IF X = 0 THEN ONE: Y = 0;
I IF X = 0 THEN X = i;
IELSE TWO: X = 3;

However, the conditional statement itself _
be labelled:

I
ITHREE: IF X = 0 THEN Y = i;
I

If more than one label is required, then they follow each
other in sequence.

Example:
L
IONE: TWO: 'gHREE: X = X + i;

i

: 1

L

9-16 ._ ,.

INTERMETRICSINCORPORATED• 701CONCORDAVENUE• CAMBRIDGE,MASSACHUSETTS02138 • (617) 661-1840_ ,it ,
4

1974017617-117

GOTOSTATEMENT

;° The GO TO statement specifies the label to which
execution branches: it takes the form:

I GO TO <label>;
J

i. <label> is a label attached to
some statement to which execution
is to branch.

)

Example s:
i
t GO TO ONE;I

The GO TO statement itself may be labelled:
I
i TWO: GO TO THREE;
}

It is important to note that HAL/S places relatively
severe restrictions on the placement of GO TO
statements and where they may cause execution to

(branch to. Section 1.3 described this on the abstract
{ level, and Section i0 further discusses it in connection

with statement groups.

, !
I i'" f

. I !
|

9-17
&

INTERMETR_C2NCORPORATED• 701 CONCORDAVENUE • CAMBRIDGE,MASSACHUSETTS02138 • 1617) 661-1840 1.

1974017617-118

I

I
I

ELIMINATINGGOTOSTATEMENTS

The Guide has stressed throughout that, according to structured _

programming principles, GO TO statements are inherently un-

desirable because they tend to disguise the program's flow
of execution.

It will be found that HAL/S contain_ a sufficient number of

other constructs to allow GO TO statements to be substantially

eliminated from a program. Following is an example showing
the elimination of GO TO statements.

Examples:

I IF X > 1.5 THEN GO TO ALPHA;

IF X < 1.5 THEN TO TO BETA;

L I Y = Y + i;
GO TO GAMMA;

IALPHA: X = X - 0.05;

GO TO GAMMA;
BETA: X = X + 0.05;

IGAMMA: .

I
i t

This example i_ programmed in HAL/S in the simplest way

(possibly having been translated from Fortran or an assembly ,,

language). The profusion of GO TO statements disguises the _I
simple flow of execution, which is interpreted by the following

flow diagram: /_ "I

*]

- !INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • 16171_1-1_0

1974017617-119

The same algorithm is more clearly programmed

. | as follows:
I

I IF X > 1.5 THEN

I X=X - 0.05;

I I ELSE
I IF X < 1.5 THEN

I X = X + 0.05;

I I ELSEI Y= Y + i;

! "
I
| 9,4 SUMMARY
g

Section 9 has described conditional statements, labels,

I GO TO statements, and the ways in which they affect theflow of execution in a HAL/S program. Some at Cempt has

been made to point out both the good and the Bad ways

of using these statements. Section i0 goes on to describe

I statement groups and how the usage of the constructs described
in Sections 9 and i0 are very often interrelated in well-

designed HAL/S programs.

'%' I

};, :

I:,

t

-i |
)

9-19

I INTERMET81CS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661.1840

1974017617-120

10, STATEMENTGROUPS

I 'i
Section 1.3 of the Guide introduced, on an abstract level,

the idea of "statement groups", which could be treated as

i if executable and could be
they were simple statements,

nested one inside the other. The power of such a facility

can be seen, for example, when it is used in conjunction

I ith the conditional statement: (this is demonstrated laterin Section i0.I).

%

I There is, in fact, a _econd, equally important reason forgrouping statements in HAL/S: the execution of such groups

can bG controlled in a variety of ways. If no explicit

i pecification is made, the sequence of statements is executed
once only. By explicit specification:

• the sequence may be repetitively executed until some

I condition is satisfied;

• a single executable statement (or nest statement group)

I f the group, selectable at execution time, may beexecuted. .

i ection i0 exp]ains in detail how statements are grouped,and how execution control of the groups is specified.

| i0,i DELIMITINGSTATEMENTGROUPS

I In HAL/S, groups of statements are said to be "well-bracketed":they are delimited explicitly by opening and closing statements
which are themselves considered executable.

I
L

* v I |

!
10-1 .,

I NTERMETRICS INCORPORATED • 701 CONCCRD AVENUE • CAMBRIDGE, MASSACHUSETT¢5 02;38 • (617) 661-1840

i -- I i
i /._ ""

1974017617-121

I
I

THEDOSTATEMENT l

Every statement group is opened with a "DO" statemeDt which
is also used to _pecify control of execution within the group.

It takes the generic form:

I DO <control>;I I

I. <control> is a construct to be

described. It specifies the manner

in which the sequence of statements
is to be executed.

2. <control> is optional. If it is

absent, the sequence of statements
is executed in its natural order*

once only.

d 3. The DO statement is executable in

r that it may be labelled according
to the Rules of Section 9.

The particular instances of DO statements will be explained
in Section 10.2.

s

* The "natural order" of execution was explained in
Section 3.3.

10-2
_q

,-,,r,',',,,r:.'r,',lp¢, I' .P_ :IPP _ATr:rl. 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

1974017617-122

I

I
THEENDSTATEMENT

I
Every statement group is closed with an END statement:

I
' |

I END <label>;

i. The END statement is executable

in that it may be labelled according

"_ to the Rules of Section 9.

2. <label> is optional: if present,

i the opening DO statement of the group
must be labelled with "label>.

!

The label specification in an END statement is never

functioz,._lly necessary in HAL/S. However, it should beregarded a,_ good programming practice because it
facJlitate_ cross-checking by the compiler.

|
_xamples:

I Two instances of statement groups are shown below.Even though details of execution control have not
yet been explained, the form of the construct should

I be clear.i

I DO WHILE I • 01 } opening DO statement
; I-I-l;

i '
' A - 0; I group of statements!s x
!

; END; } closing END statement

; FIX: DO FOR I - 1,25,16,21

I ' A =' -A I. J.S I I _ one statement in group

' END FIXI } label specification in ,

i END matches label of DO
10-3

................ ,-,,,,,,-_,-,"̂,r:n. ?nl r-_._.r'_ :In A_'_:N'I1=• CAMBRIDGE.MASSACHUSETTS02138 • (617) 661-1840

1974017617-123

!

|

!
m !

The folic_;in: examples show the importance of being able J
to group st,:_..c_mentstogether for use in conjunction with a

" conditional _tatement.

!, IF S = 0 THEN I = 2;
e

, C = 'RESET VALUE OF I TO ' IIf;

. . |I

It is required to conditionally
execute both assignments: one
so lution-l-_- g

i$

' IF S _= _ THEN GO TO NOSET;!

' I-- 2;

!I C = 'RESET VALUE OF I TO 'llI;
I NOSET :
,I

!I

" This solution is error prone and
not in accordance with structured

; programming concepts: a better
solution is - |

6
I

' IF S _ 0 THEN DO|

Ii I_ 2;
, ¢ - '_SETV_U_ OFI _ 'III,
i END;I

, : |
I :
, The whole of the group enclosed

by DO ... END is subject to t _
conditional execution. _

, I
I

• I
10-4 i

..I

1974017617-124

i

l 10,2 REPETITIVEEXECUTIONOFSTATEME,_TGROUPS
|

The sequence of statements in a group can be executed

I repetitively until some condition is satisfied. Inthis section, two basic forms of DO "tatement causing
repetitive execution are described:

I • The DO WHILE statement, in which execution isrepeated while a relational or BOOLEAN expression

t remains TRUE in value;

I • The DO FOR statement, in which the sequence is
executed once for each of a set of assigned values

I of a "control variable".

I THEDOWHILESTATEMENT
I @

The forth of the DO WHILE statement is:

I _
I
, DO WHILE <cond>;

! :i. <cond> is any relational or
BOOLEAN expression. It is
evaluated prior to each cycle

• of executzon of the statement
i

sequenc_ in the group. _i ,"

_ 2. The next cycle of execution ofthe group proceeds if the value _

Im of <cond., is TRUE. i _'

3. If the value of <cond> io FALSE,
the stopping condition is satls-
fled. Execution proceeds to the

" statement following the END state-
ment of the group.

i --- , , ,,, %

I

' I
l 10-5

1974017617-125

!

Examples : I

tI = 9;
DO WHILE I > 0; B

Z I = I- 2; i

END;
i

Here the group is executed 5 times, after which l
the value of I is -i. In flow diagram form,

the sequence of events is:

Set
I = 9

Yes

_No
!
!

I "i1

It is possible for a group never to be executed: i

, DO WHILE FALSE;
4 !

, I= I -2; _I' END ;!

' [

'10-6

|i'INTERMETD,ICS INCORPORATED• 701 CONCORDAVENUE • CAMBRIDGE,MASSACHUSETTS02138 • 1617)661-1840

I

1974017617-126

_J'r_l_t,,_l':'-TPlO%IIXIk;iJH[OHAIELI. _ , '.-.'.,,_,_,_U, ,VLI.UL_
_- -

_, _" ,,_ _ ..,
i

!

l It is also possible for a group to be executed
forever :

" I 'i I=0;

' DO WHILE TRUE;I
, I = I - 2;

l ' END
I

I •

I •

' I

I Normally in this case, the programmer would insert

statements in the group removing this possibility:

I ,mj I = 9;
' DO WHILE TRUE;
I

I I I= I- 2;
, IF I < 0 THEN GO TO ALL DONE;
END;!

! •

, :I '
I
l There exists a variant of

" the DO WHILE statement

I called the DO UNTIL state-ment. Here execution of

the group is assured at least

once, whatever the value of "

I the controlling expression.
See: (tbd).

ni ,n i

I L

" I

I

I 10-7

!
,',_, ,_T_.ro ,.,r_mpn_AT_n. 701 CONCORD AVENUE •CAMBRIDG£. MASSACHUSETTS 02138 • (617)661q840

1974017617-127

I

THEDOFORSTATEMENT

- The most widely used form of the DO FOR statement is: I
|

I

;DO FOR <var> = <init> TO <final> BY <inc>;

I1. <var> is an unarra_ed INTEGER or SCALAR

data item (it may be subscripted if

required). It is called the _control
variable" of the DO FOR statement. !

2. <init>, <final> and <inc> are integer

or scalar expressions: |

• <init> is the initlal value

assigned to <var>. [

• <inc> is the amount by which
<var> is incremented on each

cycle of execution cf the sequence

of statements in the group.
"4

• <final> is the value against which
<var> is tested at the start of

every cycle to determine if the

stopping condition is satsified.

All three expressions are evaluated

once prior to the first cycle of
E Tution. 1

3. The stopping condition is met when
the value of <var> lies outside the I

range bounded by <init> and _final>.

4. <inc> may be either positive o_ "I

ne_ativ e. The phrase
!

_ BY <inc > _

is optional. If omitted, the implied
increment is +I.

!
10-8

,. ,.-,-,-,,,,-r,-,,,-,e ,.,rnmpr :_ATCn. 7nl CnNnt')Rrl AVENUE • CAMBRIDGE. MASSACHUSETI'S 02138. (81"/) 661-18401 !
i

1974017617-128

i

I

!

Examples :
J
I
0 DO FOR I = 1 TO i0;

l X = I;I
i,S I

END;
|
!

Here the group is executed 10 times. I is

initially i, and increments each time until
i0 is reached. At the end of execution of

the group, the value of I is ii. In flow

diagr_ fo_, the sequence of events is:

1 =1
t

Jincr_ent I

!

1 'I

i !
Set

XI=I
i

J

. 10-9
........ T,-,,,',_ _'.,"_r_pnr_^Tl_n. ?_,t PC_NC'C_D AVFNIIF • CAMBRIDGE MAS£ACHUSETTS 02138 • (617) 681-1840 y

I

1974017617-129

:I=};
: DO FOR I = I + 5 _0 1 - 3 BY -2;

=_ _ X=X+I;
;END; !

This example demonstrates some of the subtleties I
of the DO FOR statement. The initial and final

values are precomputed as 12 and 4 respectively.
Then I is reused as the control variable: the
group is executed 5 times, and after the last
cycle of execution, I retains the value 2.

!

f

X
l

Care must be taken if the "

; control variable is integer

and the range expressions are

scalar, rounding occurs

• during assignment of values
in such cases.

This DO FOR statement may :i- possess a WHILE or UNTIL

clause which furnishes a

supplementary stopping con-
dition.]

_ See (t.bcl).

% L 1

,;t I

.):" i0-I0 J, 'T/J3METR/CSINCORPOR_____AT_E,.D: 701 CONCORDAVENUE • CAMBRIDGE,MASSACHUSETTS02138 • (617) 661-184
i

1974017617-130

- I I

I

I

I The DO FOR statement has a second form which is used ifthe values of the control variable do not form a regular

progression:

' " i

! DO FOR <var> = <exp>, <exp>, ... <exp>;
i

I I. <var> is the control variable as before.

2. Each <exp> is an integer or scalar

I expression. Values of the <exp>'s areassigned to <vat> in turn prior to the
execution of each cycle, on a left-to-

I right basis.

3. Each <exp> is evaluated immediately prior

i to the cycle of execution in which it
will be used.

I Examples:

I _ DO FOR I =
17,5,12,4;

: X = I;
:S I

I ; END;

Here, I takes the successive values 17, 5, 12, and 4.

_ After the end of the last cycle, the value of I remains

_ at 4.

%.

! '; ' 1=7;

i '1 DO FOR I = I + 5, I + 3, I + I, I - i, I - 3;
X=X+I;

END;

Superficially, this example looks like a different

_ _ way of expressing the second exile for the first i

_ _ form of DO FOR statement: • I

'_ ' I_7;

, : , DO FOR I - _ + 5 TO I - 3 BY -'2_
' X-X+I;

t !

, END;

' i0-II

; I _NTERMETR_C_NC_R_RATED_7_1C_NC_R_A_ENUE_CAMBR_DGE_MA_SACH_SE_S_2138_(617)661_184_

1974017617-131

i J

However, the successive values of _ in the new b
form (by Rule 3) are:

12, 15, 16, 15, 12

as opposed to

12, i0, 8, 6, 4

in the old form.

Rounding also occurs if the

control variable is integer
and any of the control expres-
sions are scalar.

As before, the DO FOR statement
may possess a WHILE or UNTIL
clause which furnishes a _"

_pplementary stopping tonal- I _;_tion.
i See: (thd)" i

10-12 !

........ ,,'-T,',,r',',im,,rr,"r_nR,,TFm • 7nl CONCORDAVENUE • CAMBRIDGE,MASSACHUSETTS02138 • (617) 661-1840

1974017617-132

I l

I

| 10,3 SELECTIVEEXECUTIONOFSTATEMENTGROUPS

m One statement of a group may be selected for execution

! by means of the DO CASE statement. The form of the
DO CASE statement is:

I
DO CASE <exp>;

I i. <exp> is an integer or scalar
expression.

I 2. If its value is k (after rounding
if necessary), then the k th state-
ment of the group is selected for

I execution.

3. A run time error results if k < 0

I or k is greater than the number ofstatements in the group.

!
The flexibility of a DO CASE statement is understood when

I it is realized that the selected statement may be acompound statement (i.e. it may itself be a statement
, group) .

• _ Example : |

' '!_ I

_: I= 3;
DO CASE If

X " 4; case 1

I X- 3; case 2
' _:" X-7;

_. case 3

_:, END;
'_- X - 1; case 4
7

, X . Of case 5

I ENDf

i: 10-13

I INTERMETRICSINCORPORATED.701 CCNCORDAVENUE • CAMBRIDGE,MASSACHUSETTS02138 • (617) 661-1840

1974017617-133

I I

I

Execution results in the third statement being

scheduled for execution, and the following |
values being set: I

X- 7, Y - 3 I

I
An ELSE clause may be added

to the DO CASE statement which I
t

is executed instead of an

%rror being signalled, if the
value of the case variable is _

_. outside the legal range for the
statement group.
See: (tbd).

-°

,]

INTERMETRICS INCORPORATED "701 CONCORD AVENUE .CAMBRIDGE. MASSACHUSETTS 02138 . (617) 661-1840.._i

. i

1974017617-134

; 10,4 BRANCHINGINSTATEMENTGROUPS

i Any statement group may be branched out of by executing

• a GO TO statement. In those cases where the group is

| being respectively executed, execution obviously ceases

I before the stopping criterion is satisfied. Because GO TO

statements are viewed unfavorably from the standpoint of

structured programming, HAL/S possesses two statements

I for controlled branches in
expressly executing statement

groups.

I • The EXIT statement is, in effect, a controlled branchou___ttof a statement group.

I • The REPEAT statement only applies to statement groupsexecuted repetitively, and is a controlled branch back

to the beginnin_ of the group.
i

I THEEXITSTATEMENT

I The simplest form o_ the EXIT statement is:

I '• g

; ' EXIT;
I

i. Its execution causes an immediate

I out of the innermost state-
"branch

ment group in whicE it is enclosed.

I 2. Execution is directed to the first
I statement following the END of the

group branched out of.

• , , •
?

/

"1
. 1

!
10-15

I I,NTERMETRICS T,"<:'ORPORATED• 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 ,l

i

1974017617-135

I

I
i

Examples. _i

I
, DO:

', X= i;, Y= 2;

' IF Z = 3 THEN EXIT;i

' END ;i
, X= X+ l;
i
l

Arrow shows branch in execution if Z - 3

!i DO WHILE X > 0;

,l X=X-1;

i IF X > 2 THEN DO; ii IF Y = 3 THEN EXIT;I

I Y--_

i END;

I END;
I

Arrow shows branch in execution if Y - 3: execution ibranches to end, but not out of DO WHILE group.

There exists a second form of the EX!'2 statement to allow branches _
out of other than the innermost statement group:

t

10-16 I

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 I

1974017617-136

w

ill ' i .x_<_a,>+_>,"
i. Its execution causes a branch out

of the enclosing statement group

I whose DO statement possesses
the

label <label>.

2. Execution is directed to the firststatement after the END of the group
branched out of.

I -

I Example :

I ONE: DO WHILE X > 0;
, X=X-I;_O,ORi=__o_0

! !_ _=_i+x'IF X = I THEN EXIT ONE+
I IF X = 0 THEN EXIT: J

I END, 4" -- /

I The first EXIT statement causes a branch out of e
.. outer group rather than the inner, by virtue of its

label.

!

I '

+! f"

I i_"*/, Y

10-17

I INTERM[":TRICSINCORPORATED"701 CONCORDAVENUE .CAMBRIOC_.MASSACHUSETTS02138 .16171661-184_ ,

1974017617-137

J

THEREPEATSTATEMENT I

P_

i f

!
I

The simplest form of the REPEAT statement is; I

I i. It must be enclosed in a DO FOR

I or DO WHILE group. I
I 2. Its execution causes an immediate
I branch to the beginning of the I
I innermost enclosing DO FOR or •

I D0 WHILE gr°up"

[3. The next cycle of execution of I
I the group then starts (unless
I of course the stopping condition

.....I is satisified). , I

Examples: I

_DO WI'IILE X > O_4W_L I
: x- x - i, __ •

IF X - 4 THEN DOt
! Y-Y+X! %

i IF Y - I THEN REPEAT;
ENDi -_.

I D, I '
If Y _. I then a branch back to the beginning of the
DO W_ILE is made. Note that although the DO WHILE I

_ is not the innern_st group, it i_ssthe innermcst
repetitive group.

- I

10-18 I

INTERMETRICSINCORPOI:_TED• 701CONCOflOAVENUE • CAMBREX_E.MASSACHUSETTS02138 • (617) 66" .1840I

1974017617-138

I I _ I

4

I

| Do.ILEx>' X = X _ i; _
!
, IF X = 1 THEN REPEAT;
i Y = X;

:s x
i END;I

E

When X - 2 the REPEAT branch is executed:

a new cycle of execution does not begin
• | however because the initial test shows that

I the stopping condition is satisfied.

i As with the EXIT statement, there exists a second form ofthe REPEAT statement allowing brancnen back to the beginning
of other than the innermost DO Wq_41LEor DO FOR group:

| -.;. REPEAT <label>;

I I. Its execution cause& an immediate; branch to the beginning of the
enclosing DO FOR or DO WHILE

,group whose DO statement possesses
i the label <label>.

2. The next cycle of execution of

I the then starts (unless the
group

stopping condition is satisfied).

' I
10-19

I INTEI_METR,CS;NCORPORATED• 701CONCORDAVENUE - CAPAP.!:huGE,MASSACHUSETTS02138 • 16171661-1840 ,
t

1974017617-139

!
Example :

I

FOR I : 1 TO i0;_'_ i.I ONE : DO
I J = I; 7._

, DO WHILE J > 0;< _ "_
j = J- i; ,._-__",,%I
X = X + J; _ _ --'_I

IS J J _
I IF X = 25 THEN REPEAT;
Is J _

i IF X = 0 THEN REPEAT ONE;

IS J

I END; i
I END ;

I Z=O;

' ;
The second REPEAT statement restarts the outer DO FOR

group rather than the inner DO WHILE by virtue of its label.

!

|

I0-20

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 1 '_'
I

1974017617-140

!

10,5 SUMMARY _

Section i0 has explained how statements may be grouped

together into compound statements, and how such groups

_ay be executed repetitively or selectively.

A= this point in the Guide, programs can be constructed

u_ing assignment statements, and controlling execution

through conditional statements and statement groups. It

' remains in Part I to complete the description of basic HAL/S
programming tools by discussing functions, procedures, and

I/O. Section ii describes how functions and procedures are
t defined and invoked.

i ,

I !

I
I i0-21 "_

INTERMETRICS IN_OP?ORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSA(_HUSETTS 02138 • (617) 661-1840 _'

1974017617-141

I 1i, FUNCTIONSANDPROCEDURES(TBD)

| 11,1 BLOCKDEFINITIONS(TBD)

| ii,2 PARN_ETERLISTS(TBD)

| 11,3 PROCEDURECALLING(TBD)

| 11,4 FUNCTIONINVOCATION(TBD)

, | 11,5 BUILT-INFUNCTIONS(TBD)

| 11,6 SUMMARY(TBD)

!

!

!

LI
i

t

I' 11-1

I;,ITERMETRICSINCORPORATED• 701COI'_CORDAVENUE • CAMBRIDGE,MASSACHUSETTS02138 • (617) 661-1840

i

1974017617-142

| 12, INPUT/OUTPUTSTATEMENTS(TBD)

| ,_
12,1 THEREADSTATEMENT(TBD)

!
12,2 THEWRITESTATEMENT(TBD)

| 12,3 SIMPLEI/OFORMATCONTROL(TBD)

| 12,4 SUMMARY(TBD)

I
I

I

!

!

!

| _

! !

!

| ,,
12-1

_NTF_k_FTR1CSINCORPORATED. 70_ CONCORD AVENUE • CAMBRIDGI_, MASSACHUSETTS 02138 • (617) 661-1840

4

1974017617-143

I

| 13, SUMMARYOFPARTI (TBD) _

I

I

I

I

I

I

I

.!

,_:_

13-i

I_,_Fm_TR,C£ INCQRPORATED •701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

i

1974017617-144

